Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
The rate of a chemical reaction is defined as the change in concentration of any one of the reactants or products per unit time.
Consider the reaction A → B,
Rate of the reaction is given by,
Rate = −d[A]/ dt=+d[B]/ dt
Where, [A] → concentration of reactant A
[B] → concentration of product B
(-) A negative sign indicates a decrease in the concentration of A with time.
(+) A positive sign indicates an increase in the concentration of B with time.
There are certain factors that determine the rate of a reaction: