Question:

Negation of the statement \( (\rho \land r) \rightarrow (r \lor q) \) is

Show Hint

The negation of an implication is found by retaining the premise and negating the conclusion.
Updated On: Apr 1, 2025
  • \( (\rho \land r) \land (\neg r \land \neg q) \)
  • \( \neg (\rho \land r) \rightarrow (r \lor q) \)
  • \( \neg (\rho \lor r) \rightarrow \neg (r \land q) \)
  • \( (\rho \land r) \lor (r \lor q) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The negation of a conditional statement \( p \rightarrow q \) is \( p \land \neg q \). So the negation of the given statement \( (\rho \land r) \rightarrow (r \lor q) \) is \( (\rho \land r) \land (\neg r \land \neg q) \).
Was this answer helpful?
0
0