1. SrCl$_2$ doping in NaCl introduces Sr$^{2+}$ ions, replacing two Na$^+$ ions to maintain charge neutrality, creating one cationic vacancy per Sr$^{2+}$.
2. Formula Na$_{0.9998}$Sr$_{0.0001}$Cl indicates 0.0001 moles of Sr$^{2+}$ per mole of solid.
3. Each Sr$^{2+}$ causes 1 Na$^+$ vacancy. Thus, vacancies = 0.0001 moles $\times 6\times10^{23}$ = $6\times10^{19}$ vacancies/mol.
4. The crystal remains neutral as Cl$^-$ balances charges.
5. Thus, the answer is (2) $6\times10^{19}$.