\(\sqrt{12}\)
We are given:
We need to find:
\[ |\vec{c} \times (\vec{a} \times \vec{b})|. \]
Using the distributive property, expand:
\[ \vec{a} \times \vec{b} = (\alpha \vec{b} - \vec{n}) \times \vec{b}. \]
Distribute the terms:
\[ \vec{a} \times \vec{b} = \alpha (\vec{b} \times \vec{b}) - (\vec{n} \times \vec{b}). \]
Since \(\vec{b} \times \vec{b} = 0\), this simplifies to:
\[ \vec{a} \times \vec{b} = -(\vec{n} \times \vec{b}). \]
Substitute \(\vec{a} \times \vec{b}\) into \(\vec{c} \times (\vec{a} \times \vec{b})\):
\[ \vec{c} \times (\vec{a} \times \vec{b}) = \vec{c} \times (-\vec{n} \times \vec{b}). \]
Using the vector triple product identity:
\[ \vec{c} \times (\vec{n} \times \vec{b}) = (\vec{c} \cdot \vec{b}) \vec{n} - (\vec{c} \cdot \vec{n}) \vec{b}. \]
Substitute this back, considering the negative sign:
\[ \vec{c} \times (\vec{a} \times \vec{b}) = -((\vec{c} \cdot \vec{b}) \vec{n} - (\vec{c} \cdot \vec{n}) \vec{b}). \]
Given \(\vec{n} \perp \vec{c}\), we have \(\vec{c} \cdot \vec{n} = 0\). Substituting this value:
\[ \vec{c} \times (\vec{a} \times \vec{b}) = -(\vec{c} \cdot \vec{b}) \vec{n}. \]
Given \(\vec{b} \cdot \vec{c} = 12\), substitute this value:
\[ \vec{c} \times (\vec{a} \times \vec{b}) = -12 \vec{n}. \]
Compute the magnitude:
\[ |\vec{c} \times (\vec{a} \times \vec{b})| = 12 |\vec{n}|. \]
Since \(\vec{n}\) is a unit vector, \(|\vec{n}| = 1\). Thus:
\[ |\vec{c} \times (\vec{a} \times \vec{b})| = 12. \]
The value of \(|\vec{c} \times (\vec{a} \times \vec{b})|\) is:
\[ \boxed{12}. \]