To solve the given problem, we need to evaluate the following limit:
\[\lim\limits_{n \rightarrow \infty}\frac{6}{n+2}\left\{(2+\frac{1}{n})^2+(2+\frac{2}{n})^2+\ldots+(2+\frac{n-1}{n})^2\right\}\]First, let's rewrite the expression inside the brackets. It is a sum of squares:
\[\sum_{k=1}^{n-1} \left(2+\frac{k}{n}\right)^2\]Each term in the expansion can be expressed as:
\[\left(2+\frac{k}{n}\right)^2 = 4 + \frac{4k}{n} + \frac{k^2}{n^2}\]Thus, the sum becomes:
\[\sum_{k=1}^{n-1} \left(4 + \frac{4k}{n} + \frac{k^2}{n^2}\right)\]Separating the sums, we have:
\[4(n-1) + \frac{4}{n} \sum_{k=1}^{n-1} k + \frac{1}{n^2} \sum_{k=1}^{n-1} k^2\]Using the formulas for the sums, \(\sum_{k=1}^{n-1} k = \frac{(n-1)n}{2}\) and \(\sum_{k=1}^{n-1} k^2 = \frac{(n-1)n(2n-1)}{6}\), we substitute to get:
\[4(n-1) + \frac{4}{n} \cdot \frac{(n-1)n}{2} + \frac{1}{n^2} \cdot \frac{(n-1)n(2n-1)}{6}\]Simplifying each part:
Plug these into the original expression:
\[\frac{6}{n+2} \left(4n - 4 + 2(n-1) + \left(\frac{n}{3} - \frac{1}{2}\right)\right)\]Simplify the expression further:
Therefore, the limit is 38.
