Question:

For n∈N n \in \mathbb{N} , let X1,X2,…,Xn X_1, X_2, \ldots, X_n be a random sample from the F20,40 F_{20,40} distribution. Then, as nβ†’βˆž n \to \infty , 1nβˆ‘i=1n1Xi \frac{1}{n} \sum_{i=1}^n \frac{1}{X_i} converges in probability to __________ (round off to 2 decimal places).

Updated On: Jan 25, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 1 - 1.2

Solution and Explanation

1. Expectation of 1Xi \frac{1}{X_i} : - For X∼F20,40 X \sim F_{20,40} , the expectation E(1X) E\left(\frac{1}{X}\right) exists when the numerator degrees of freedom (d1 d_1 ) satisfies d1>2 d_1 > 2 . - Using properties of the F F -distribution: E(1X)=d2d2βˆ’2,where d1=20, d2=40. E\left(\frac{1}{X}\right) = \frac{d_2}{d_2 - 2}, \quad \text{where } d_1 = 20, \, d_2 = 40. - Substituting d2=40 d_2 = 40 : E(1X)=4040βˆ’2=4038β‰ˆ1.05. E\left(\frac{1}{X}\right) = \frac{40}{40 - 2} = \frac{40}{38} \approx 1.05.  

2. Convergence in Probability: - By the Law of Large Numbers, the sample mean converges in probability to the expected value: 1nβˆ‘i=1n1Xiβ†’PE(1X). \frac{1}{n} \sum_{i=1}^n \frac{1}{X_i} \overset{P}{\to} E\left(\frac{1}{X}\right).

Was this answer helpful?
0
0

Top Questions on Limit Theorems

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions