Question:

Let (𝑋1, 𝑋 ) be a random vector having the probability mass function
𝑓(π‘₯1, π‘₯2 ) = { 𝑐 π‘₯1! π‘₯2! (12 βˆ’ π‘₯1 βˆ’ π‘₯2 )! , if π‘₯1, π‘₯2 ∈ {
where 𝑐 is a real constant. Then, which of the following statements is/are TRUE?

Updated On: Nov 17, 2025
  • 𝐸(𝑋1 + 𝑋2 )=8
  • \(π‘‰π‘Žπ‘Ÿ(𝑋_1 + 𝑋_2 ) =\frac{8}{3}\)
  • \(πΆπ‘œπ‘£(𝑋_1,𝑋_2 ) = βˆ’\frac{5}{9}\)
  • π‘‰π‘Žπ‘Ÿ(𝑋1 + 2𝑋2)=8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A, B, D

Solution and Explanation

We are given a random vector \( (X_1, X_2) \) with the probability mass function:

The probability mass function is defined as:

\[ f(x_1, x_2) = \begin{cases} \frac{c}{x_1! x_2! (12 - x_1 - x_2)!}, & \text{if } x_1, x_2 \in \{0, 1, \dots, 12\}, x_1 + x_2 \leq 12 \\ 0, & \text{otherwise.} \end{cases} \]

To verify the correct statements, consider the following:

  1. Expectation: \[ E(X_1 + X_2) = 12 \times \frac{2}{3} = 8 \] This matches with statement: 𝐸(𝑋₁ + 𝑋₂) = 8.
  2. Variance of \( X_1 + X_2 \):
    • We calculate the variance using: \[ Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2Cov(X_1, X_2) \] Given the condition and symmetry, it simplifies to: \[ Var(X_1 + X_2) = \frac{8}{3} \]
    This confirms the statement: π‘‰π‘Žπ‘Ÿ(𝑋₁ + 𝑋₂ ) = \(\frac{8}{3}\).
  3. Covariance:
    • The statement regarding covariance \( Cov(X_1, X_2 ) = βˆ’\frac{5}{9} \) is not verified based on the given information.
  4. Variance of \( X_1 + 2X_2 \):
    • Calculate using the formula: \[ Var(X_1 + 2X_2) = Var(X_1) + 4Var(X_2) + 4Cov(X_1, X_2) \] From the conditions, results in: \[ Var(X_1 + 2X_2) = 8 \]
    This confirms the statement: π‘‰π‘Žπ‘Ÿ(𝑋₁ + 2𝑋₂) = 8.

Thus, the correct statements are:

  • \(𝐸(𝑋_1 + 𝑋_2) = 8\)
  • \(π‘‰π‘Žπ‘Ÿ(𝑋_1 + 𝑋_2 ) = \frac{8}{3}\)
  • \(π‘‰π‘Žπ‘Ÿ(𝑋_1 + 2𝑋_2) = 8\)
Was this answer helpful?
0
0

Top Questions on Limit Theorems

View More Questions

Questions Asked in IIT JAM MS exam

View More Questions