\( 2\sqrt{2} < k ≤ 3 \)
\( 2\sqrt{3} < k ≤ 3\sqrt{2} \)
\( 2\sqrt{3} < k <3 \sqrt{3} \)
To solve the given problem, we need to understand the relationship between combinatorial coefficients and how they are affected by the multiplication factor \(k^2 - 8\).
Conclusion: From the above deductions, the correct parameter for \(k\) is \(2\sqrt{2} < k \leq 3\), which corresponds to option \(2\sqrt{2} < k ≤ 3\).
Given: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
We know: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
For this expression to hold, \( k^2 − 8 \) must be positive:
\( k^2 − 8 > 0 \Rightarrow k > 2\sqrt{2} \text{ or } k < -2\sqrt{2} \)
Thus, \( k \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty) \)
Next, we check the range \( -3 \le k \le 3 \) to satisfy the constraint. Combining both conditions: \( k \in [2\sqrt{2}, 3] \)
\[ \left( \frac{1}{{}^{15}C_0} + \frac{1}{{}^{15}C_1} \right) \left( \frac{1}{{}^{15}C_1} + \frac{1}{{}^{15}C_2} \right) \cdots \left( \frac{1}{{}^{15}C_{12}} + \frac{1}{{}^{15}C_{13}} \right) = \frac{\alpha^{13}}{{}^{14}C_0 \, {}^{14}C_1 \cdots {}^{14}C_{12}} \]
Then \[ 30\alpha = \underline{\hspace{1cm}} \]
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.
Consider an A.P. $a_1,a_2,\ldots,a_n$; $a_1>0$. If $a_2-a_1=-\dfrac{3}{4}$, $a_n=\dfrac{1}{4}a_1$, and \[ \sum_{i=1}^{n} a_i=\frac{525}{2}, \] then $\sum_{i=1}^{17} a_i$ is equal to
