\( 2\sqrt{2} < k ≤ 3 \)
\( 2\sqrt{3} < k ≤ 3\sqrt{2} \)
\( 2\sqrt{3} < k <3 \sqrt{3} \)
Given: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
We know: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
For this expression to hold, \( k^2 − 8 \) must be positive:
\( k^2 − 8 > 0 \Rightarrow k > 2\sqrt{2} \text{ or } k < -2\sqrt{2} \)
Thus, \( k \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty) \)
Next, we check the range \( -3 \le k \le 3 \) to satisfy the constraint. Combining both conditions: \( k \in [2\sqrt{2}, 3] \)
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32