\( 2\sqrt{2} < k ≤ 3 \)
\( 2\sqrt{3} < k ≤ 3\sqrt{2} \)
\( 2\sqrt{3} < k <3 \sqrt{3} \)
To solve the given problem, we need to understand the relationship between combinatorial coefficients and how they are affected by the multiplication factor \(k^2 - 8\).
Conclusion: From the above deductions, the correct parameter for \(k\) is \(2\sqrt{2} < k \leq 3\), which corresponds to option \(2\sqrt{2} < k ≤ 3\).
Given: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
We know: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
For this expression to hold, \( k^2 − 8 \) must be positive:
\( k^2 − 8 > 0 \Rightarrow k > 2\sqrt{2} \text{ or } k < -2\sqrt{2} \)
Thus, \( k \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty) \)
Next, we check the range \( -3 \le k \le 3 \) to satisfy the constraint. Combining both conditions: \( k \in [2\sqrt{2}, 3] \)
The term independent of $ x $ in the expansion of $$ \left( \frac{x + 1}{x^{3/2} + 1 - \sqrt{x}} \cdot \frac{x + 1}{x - \sqrt{x}} \right)^{10} $$ for $ x>1 $ is:
Let $ (1 + x + x^2)^{10} = a_0 + a_1 x + a_2 x^2 + ... + a_{20} x^{20} $. If $ (a_1 + a_3 + a_5 + ... + a_{19}) - 11a_2 = 121k $, then k is equal to _______
Consider the following sequence of reactions : 
Molar mass of the product formed (A) is ______ g mol\(^{-1}\).
In a Young's double slit experiment, three polarizers are kept as shown in the figure. The transmission axes of \( P_1 \) and \( P_2 \) are orthogonal to each other. The polarizer \( P_3 \) covers both the slits with its transmission axis at \( 45^\circ \) to those of \( P_1 \) and \( P_2 \). An unpolarized light of wavelength \( \lambda \) and intensity \( I_0 \) is incident on \( P_1 \) and \( P_2 \). The intensity at a point after \( P_3 \), where the path difference between the light waves from \( S_1 \) and \( S_2 \) is \( \frac{\lambda}{3} \), is:
