\( 2\sqrt{2} < k ≤ 3 \)
\( 2\sqrt{3} < k ≤ 3\sqrt{2} \)
\( 2\sqrt{3} < k <3 \sqrt{3} \)
Given: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
We know: \(n−1C_r = (k^2 − 8) ^nC_{r+1}\)
For this expression to hold, \( k^2 − 8 \) must be positive:
\( k^2 − 8 > 0 \Rightarrow k > 2\sqrt{2} \text{ or } k < -2\sqrt{2} \)
Thus, \( k \in (-\infty, -2\sqrt{2}) \cup (2\sqrt{2}, \infty) \)
Next, we check the range \( -3 \le k \le 3 \) to satisfy the constraint. Combining both conditions: \( k \in [2\sqrt{2}, 3] \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: