Given:
Step 1: Calculate the mass of the solution
\[ M_{sol} = V_{sol} \times d_{sol} = 500 \, \text{mL} \times 1.25 \, \text{g/mL} = 625 \, \text{g}. \]
Step 2: Calculate the mass of solute
\[ \text{Mass of solute (CuSO}_4\text{)} = M \times V_{sol} \times \text{Molar mass}. \] \[ = 0.2 \times 0.5 \times 159.5 = 15.95 \, \text{g}. \]
Step 3: Calculate the mass of the solvent
\[ \text{Mass of solvent} = \text{Mass of solution} - \text{Mass of solute}. \] \[ = 625 - 15.95 = 609.05 \, \text{g} = 0.60905 \, \text{kg}. \]
Step 4: Calculate the molality
\[ m = \frac{\text{Moles of solute}}{\text{Mass of solvent (in kg)}} = \frac{0.1}{0.60905}. \] \[ m = 0.164 \, \text{mol/kg} = 164 \times 10^{-3} \, \text{mol/kg}. \]
Final Answer
The molality of the solution is:
\[ 0.164 \, \text{mol/kg (or } 164 \times 10^{-3} \, \text{mol/kg)}. \]
Observe the following data given in the table. (\(K_H\) = Henry's law constant)
Gas | CO₂ | Ar | HCHO | CH₄ |
---|---|---|---|---|
\(K_H\) (k bar at 298 K) | 1.67 | 40.3 | \(1.83 \times 10^{-5}\) | 0.413 |
The correct order of their solubility in water is
Match List I with List II:
Choose the correct answer from the options given below:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.