The objective function is \(z = ax + by\).
Given maximum value \(z = 50\) occurs at points \((0, 10)\) and \((10, 6)\). So,
\[
z(0,10) = a \cdot 0 + b \cdot 10 = 10b = 50 \implies b = 5
\]
and
\[
z(10,6) = a \cdot 10 + b \cdot 6 = 10a + 6b = 50
\]
Substitute \(b=5\):
\[
10a + 6 \times 5 = 50 \implies 10a + 30 = 50 \implies 10a = 20 \implies a = 2
\]
Rechecking the max value at the two points with \(a=2, b=5\):
\[
z(0,10) = 0 + 5 \times 10 = 50
\]
\[
z(10,6) = 2 \times 10 + 5 \times 6 = 20 + 30 = 50
\]
So the values are \(a=2\), \(b=5\). But this matches option (c), not (a). The question states maximum at two points, so the correct pair should satisfy both.
So the correct answer is (c) \(a=2, b=5\).