Match the plots in Section I with the corresponding functions in Section II. 
Section I 
Section II 
(1) \( y = \frac{\sin^2x}{x} \) 
(2) \( y = x \sin^2x \) 
(3) \( y = \frac{\sin x}{x} \) 
(4) \( y = x \sin x \) 
 
To solve this problem, we need to match each plot in Section I with its corresponding function from Section II. Let's analyze each function and try to understand its behavior.
Analysis of Functions:
Matching:
| Plot (Section I) | Function (Section II) | 
|---|---|
| P | \( y = \frac{\sin x}{x} \) | 
| Q | \( y = x \sin^2x \) | 
| R | \( y = x \sin x \) | 
| S | \( y = \frac{\sin^2x}{x} \) | 
Based on the analysis, we can match the options as follows:
This matches the option P – 3, Q – 2, R – 4, S – 1 which is the correct answer.
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.
Bird : Nest :: Bee : __________
Select the correct option to complete the analogy.