Step 1: Flow stress at given strain rate.
Given $\dot{\epsilon} = 10 \, s^{-1}$.
\[
\sigma = 10 (\dot{\epsilon})^{0.3} = 10 (10)^{0.3}
\]
\[
\sigma = 10 \times 1.995 = 19.95 \, MPa
\]
Step 2: True strain in extrusion.
True strain in extrusion = $\ln \dfrac{A_0}{A_f}$, where $A_0$ and $A_f$ are initial and final cross-sectional areas.
Initial diameter $D_0 = 300$ mm $\Rightarrow A_0 = \pi (D_0/2)^2 = \pi (150)^2 = 70685.8 \, mm^2$.
Final diameter $D_f = 75$ mm $\Rightarrow A_f = \pi (D_f/2)^2 = \pi (37.5)^2 = 4417.9 \, mm^2$.
\[
\epsilon = \ln \dfrac{70685.8}{4417.9} = \ln (16) = 2.773
\]
Step 3: Ideal plastic work per unit volume.
Work per unit volume = flow stress × true strain.
\[
W = \sigma \, \epsilon = 19.95 \times 10^6 \times 2.773
\]
\[
W = 55.35 \times 10^6 \, J m^{-3}
\]
Final Answer:
\[
\boxed{55.4 \times 10^6 \, J m^{-3}}
\]