List I | List II |
---|---|
A. \( \oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d\phi_E}{dt} \) | I. Gauss' law for electricity |
B. \( \oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt} \) | II. Gauss' law for magnetism |
C. \( \oint \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0} \) | III. Faraday law |
D. \( \oint \vec{B} \cdot d\vec{A} = 0 \) | IV. Ampere – Maxwell law |
Ampere–Maxwell Law: - \( \oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \mu_0 \epsilon_0 \frac{d \Phi_E}{dt} \). - This matches with A-IV.
Faraday’s Law of Electromagnetic Induction: - \( \oint \vec{E} \cdot d\vec{l} = -\frac{d \Phi_B}{dt} \). - This matches with B-III.
Gauss’ Law for Electricity: - \( \oint \vec{E} \cdot d\vec{A} = \frac{Q}{\epsilon_0} \). - This matches with C-I.
Gauss’ Law for Magnetism: - \( \oint \vec{B} \cdot d\vec{A} = 0 \). - This matches with D-II.
So, the correct option is : (3) A-IV, B-III, C-I, D-II
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: