Diagram: Magnetic Field Lines Around a Straight Conductor
Right-Hand Thumb Rule:
If you hold the current-carrying conductor in your right hand such that the thumb points in the direction of the current, then the curled fingers show the direction of the magnetic field around the conductor.
Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).
Assertion (A): Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.
Reason (R): By using the choke coil, the voltage across the tube is reduced by a factor \( \frac{R}{\sqrt{R^2 + \omega^2 L^2}} \), where \( \omega \) is the frequency of the supply across resistor \( R \) and inductor \( L \). If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.
In light of the above statements, choose the most appropriate answer from the options given below:
As shown in the diagram, an electron enters perpendicularly into a magnetic field. Using Fleming’s Left-Hand Rule, determine the direction of the force experienced by the electron.
In the given figure, \( PQ \) and \( PR \) are tangents to the circle such that \( PQ = 7 \, \text{cm} \) and \( \angle RPQ = 60^\circ \).
The length of chord QR is: