Question:

Match List I with List II:
List-I (Physical Quantity)List-II (Dimensional Formula)
(A)Pressure Gradient(I)\([M^0L^2T^{–2}]\)
(B)Energy density(II)\([M^1L^{–1}T^{–2}]\)
(C)Electric field(III)\([M^1L^{–2}T^{–2}]\)
(D)Latent heat(IV)\([M^1L^1T^{–3}A^{–1}]\)

Choose the correct answer from the options given below:

Show Hint

For matching dimensional formulas:
• Analyze the definition or physical meaning of the quantity.
• Break it into base quantities and derive the dimensional formula.

Updated On: Mar 19, 2025
  • A-III, B-II, C-IV, D-I
  • A-II, B-III, C-l, D-IV
  • A-III, B-II, C-I, D-IV
  • A-II, B-III, C-IV, D-I
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

  • Pressure gradient: \[ \frac{\Delta P}{\Delta x} = \frac{[M^1L^{-1}T^{-2}]}{[L]} = [M^1L^{-2}T^{-2}]. \]
  • Energy density: \[ \frac{\text{Energy}}{\text{Volume}} = \frac{[M^1L^2T^{-2}]}{[L^3]} = [M^1L^{-1}T^{-2}]. \]
  • Electric field: \[ \frac{\text{Force}}{\text{Charge}} = \frac{[M^1L^1T^{-2}]}{[A^1T^1]} = [M^1L^1T^{-3}A^{-1}]. \]
  • Latent heat: \[ \frac{\text{Heat energy}}{\text{Mass}} = \frac{[M^1L^2T^{-2}]}{[M]} = [M^0L^2T^{-2}]. \]
Was this answer helpful?
0
0