| List-I (Physical Quantity) | List-II (Dimensional Formula) | ||
| (A) | Pressure Gradient | (I) | \([M^0L^2T^{–2}]\) |
| (B) | Energy density | (II) | \([M^1L^{–1}T^{–2}]\) |
| (C) | Electric field | (III) | \([M^1L^{–2}T^{–2}]\) |
| (D) | Latent heat | (IV) | \([M^1L^1T^{–3}A^{–1}]\) |
For matching dimensional formulas:
• Analyze the definition or physical meaning of the quantity.
• Break it into base quantities and derive the dimensional formula.
Match the LIST-I with LIST-II
| LIST-I | LIST-II | ||
| A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
| B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
| C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
| D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
