List-I (Molecule) | List-II (Shape) |
---|---|
(A) \(NH_3\) | (I) Square pyramid |
(B) \(BrF_5\) | (II) Tetrahedral |
(C) \(PCL_5\) | (III) Trigonal pyramidal |
(D) \(CH_4\) | (IV) Trigonal bipyramidal |
NH$_3$: Trigonalpyramidal ({sp}$^3$ hybridization with one lone pair on N).
BrF$_5$: Squarepyramidal ({sp}$^3${d}$^2$ hybridization with one lone pair on Br).
PCl$_5$: Trigonalbipyramidal ({sp}$^3${d} hybridization, no lone pairs).
CH$_4$: Tetrahedral ({sp}$^3$ hybridization, no lone pairs).
Matching: A-III, B-I, C-IV, D-II.
Final Answer: A-III, B-I, C-IV, D-II.
Match the LIST-I with LIST-II:
Choose the correct answer from the options given below :
The number of molecules/ions that show linear geometry among the following is _____. SO₂, BeCl₂, CO₂, N₃⁻, NO₂, F₂O, XeF₂, NO₂⁺, I₃⁻, O₃
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32