Find the least horizontal force \( P \) to start motion of any part of the system of three blocks resting upon one another as shown in the figure. The weights of blocks are \( A = 300 \, {N}, B = 100 \, {N}, C = 200 \, {N} \). The coefficient of friction between \( A \) and \( C \) is 0.3, between \( B \) and \( C \) is 0.2 and between \( C \) and the ground is 0.1.

 
If the roots of $\sqrt{\frac{1 - y}{y}} + \sqrt{\frac{y}{1 - y}} = \frac{5}{2}$ are $\alpha$ and $\beta$ ($\beta > \alpha$) and the equation $(\alpha + \beta)x^4 - 25\alpha \beta x^2 + (\gamma + \beta - \alpha) = 0$ has real roots, then a possible value of $y$ is: