Match List I with List II
Choose the correct answer from the options given below:
Step 1: Determine the Lone Pairs for Each Molecule/Ion
The number of lone pairs on the central atom can be determined using the following steps:
Count the total valence electrons of the central atom.
Subtract the electrons used for bonding with surrounding atoms.
Divide the remaining electrons by 2 to get the number of lone pairs.
Step 2: Analyze Each Molecule/Ion
\(\text{IF}_7\): Iodine has 7 valence electrons. All are used for bonding with 7 fluorine atoms. Therefore, 0 lone pairs (IV).
\(\text{ICl}_4^-\): Iodine has 7 valence electrons and gains 1 due to the negative charge. Four are used for bonding with chlorine atoms, leaving 4 electrons (2 lone pairs). Therefore, 2 lone pairs (III).
\(\text{XeF}_6\): Xenon has 8 valence electrons. Six are used for bonding with fluorine atoms, leaving 2 electrons (1 lone pair). Therefore, 1 lone pair (II).
\(\text{XeF}_2\): Xenon has 8 valence electrons. Two are used for bonding with fluorine atoms, leaving 6 electrons (3 lone pairs). Therefore, 3 lone pairs (I)}
Given below are two statements.
In the light of the above statements, choose the correct answer from the options given below:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: