Step 1: Analyze each equation.
- (A) If \( |A^2 - 1| = 0 \), then \( A^2 = 1 \), so \( A = \pm 1 \), thus \( A = 1 \) satisfies the equation. This matches with List-II option IV (2).
- (B) \( \Delta = \left| \frac{1}{2} \right| = \frac{1}{2} \), hence \( \Delta = 1 \). This matches with List-II option II (1).
- (C) The matrix \( A = \left[ \begin{matrix} 0 & 1 \\ 0 & 2 \end{matrix} \right] \) has determinant \( |A| = 0 \times 2 - 1 \times 0 = 0 \). This matches with List-II option III (-2).
- (D) If \( A + 1 = 1 \), then \( A = 0 \), hence this matches with List-II option I (0).
Step 2: Conclusion.
Thus, the correct matching is: (A) - (IV), (B) - (II), (C) - (III), (D) - (I).
Find the product of the matrices: \[ \left[ \begin{matrix} 6 & 5 \end{matrix} \right] \left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \]
In C language, mat[i][j] is equivalent to: (where mat[i][j] is a two-dimensional array)
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II
Choose the correct answer from the options given below:
Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, P3, P4, and P5, with the given length of the CPU burst (in milliseconds) and their priority:
\[\begin{array}{|c|c|c|}\hline \text{Process} & \text{Burst Time (ms)} & \text{Priority} \\ \hline \text{P1} & 10 & 3 \\ \hline \text{P2} & 1 & 1 \\ \hline \text{P3} & 4 & 4 \\ \hline \text{P4} & 1 & 2 \\ \hline \text{P5} & 5 & 5 \\ \hline \end{array}\]
Using priority scheduling (where priority 1 denotes the highest priority and priority 5 denotes the lowest priority), find the average waiting time.