Step 1: Analyze each equation.
- (A) If \( |A^2 - 1| = 0 \), then \( A^2 = 1 \), so \( A = \pm 1 \), thus \( A = 1 \) satisfies the equation. This matches with List-II option IV (2).
- (B) \( \Delta = \left| \frac{1}{2} \right| = \frac{1}{2} \), hence \( \Delta = 1 \). This matches with List-II option II (1).
- (C) The matrix \( A = \left[ \begin{matrix} 0 & 1 \\ 0 & 2 \end{matrix} \right] \) has determinant \( |A| = 0 \times 2 - 1 \times 0 = 0 \). This matches with List-II option III (-2).
- (D) If \( A + 1 = 1 \), then \( A = 0 \), hence this matches with List-II option I (0).
Step 2: Conclusion.
Thus, the correct matching is: (A) - (IV), (B) - (II), (C) - (III), (D) - (I).
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to:
Find the product of the matrices: \[ \left[ \begin{matrix} 6 & 5 \end{matrix} \right] \left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \]