Question:

Find the product of the matrices: \[ \left[ \begin{matrix} 6 & 5 \end{matrix} \right] \left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \] 

Show Hint

When multiplying a row matrix by a column matrix, the result is a scalar that is the dot product of the row and column.
  • \( \left[ \begin{matrix} -6 \\ 5 \end{matrix} \right] \)
  • \( \left[ \begin{matrix} -6 \\ 5 \end{matrix} \right] \)
  • \( \left[ \begin{matrix} -1 \end{matrix} \right]\)
  • \( \left[ \begin{matrix} 1 \end{matrix} \right] \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

We are given two matrices and are asked to multiply them: \[ \left[ \begin{matrix} 6 & 5 \end{matrix} \right] \left[ \begin{matrix} -1 \\ 1 \end{matrix} \right] \] This multiplication involves calculating the dot product of the row vector and the column vector. The result will be a scalar: \[ 6 \times (-1) + 5 \times 1 = -6 + 5 = -1 \] Thus, the result is: \[ \left[ \begin{matrix} -1 \end{matrix} \right] \]
Was this answer helpful?
0
0