Question:

$\lim_{n \to \infty} \left(\frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + 3^2 + \dots + \frac{1}{5n}} \right) =$

Updated On: Dec 26, 2024
  • $\frac{\pi}{4}$
  • $\tan^{-1} 3$
  • $\tan^{-1} 2$
  • $\frac{\pi}{2}$
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Rewrite the given sum as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n^2 + k^2}. \] This simplifies to a Riemann sum. By integrating and using standard trigonometric limits, we get: \[ \lim_{n \to \infty} = \tan^{-1} 2. \]

Was this answer helpful?
0
0