Rewrite the given sum as: \[ \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n^2 + k^2}. \] This simplifies to a Riemann sum. By integrating and using standard trigonometric limits, we get: \[ \lim_{n \to \infty} = \tan^{-1} 2. \]