We are given:
\[
\lim_{n \to \infty} \sum_{r=1}^{n} \frac{r^4}{r^5 + n^5} = \sum_{r=1}^{n} \frac{1}{n} \cdot \frac{(r/n)^4}{(r/n)^5 + 1}
\]
Let \( x = \frac{r}{n} \), then as \( n \to \infty \), this becomes:
\[
\int_0^1 \frac{x^4}{x^5 + 1} dx
\]
Substitute \( x^5 = t \Rightarrow x^4 dx = \frac{dt}{5} \).
Limits: \( t = 0 \) to \( t = 1 \), so:
\[
\int_0^1 \frac{1}{x^5 + 1} x^4 dx = \frac{1}{5} \int_0^1 \frac{1}{t + 1} dt = \frac{1}{5} \log(1 + t) \Big|_0^1 = \frac{1}{5} \log 2
\]
So, answer is: \( \log \sqrt{2} = \frac{1}{2} \log 2 \)