Step 1: Understand the condition for a purely real number.
A complex number is purely real if its imaginary part is zero.
Step 2: Express the given expression in terms of real and imaginary parts.
Let \( \omega = x + iy \) and \( \overline{\omega} = x -iy \).
The expression becomes: \[ \frac{\omega -\overline{\omega}z}{1 -z} = \frac{(x + iy) -(x -iy)z}{1 -z} \]
Step 3: Simplify the expression. \[ \frac{(x + iy) -(x -iy)z}{1 -z} = \frac{x(1 -z) + iy(1 + z)}{1 -z} \] \[ = x + iy \cdot \frac{1 + z}{1 -z} \]
Step 4: Set the imaginary part to zero.
For the expression to be purely real, the imaginary part must be zero: \[ y \cdot \frac{1 + z}{1 -z} = 0 \]
Since \( y \neq 0 \), we have: \[ \frac{1 + z}{1 -z} = 0 \quad \Rightarrow \quad 1 + z = 0 \quad \Rightarrow \quad z = -1 \]
Step 5: Determine \( |z| \).
If \( z = -1 \), then \( |z| = 1 \).
For a non-zero complex number $ z $, let $\arg(z)$ denote the principal argument of $ z $, with $-\pi < \arg(z) \leq \pi$. Let $\omega$ be the cube root of unity for which $0 < \arg(\omega) < \pi$. Let $$ \alpha = \arg \left( \sum_{n=1}^{2025} (-\omega)^n \right). $$ Then the value of $\frac{3 \alpha}{\pi}$ is _____.