Step 1: Understanding the Concept:
We use the exponential form of complex numbers. $z = e^{-i\pi/3}$. Then $z^k + \frac{1}{z^k} = 2 \cos\left(\frac{k\pi}{3}\right)$. We evaluate the sum using trigonometric identities and periodic properties. Step 2: Detailed Explanation:
$z^k + z^{-k} = 2 \cos(k\pi/3)$. We need $S = \sum_{k=1}^{21} (2 \cos(k\pi/3))^3 = 8 \sum_{k=1}^{21} \cos^3(k\pi/3)$.
Using $\cos^3 \theta = \frac{1}{4} (3 \cos \theta + \cos 3\theta)$:
$S = 8 \cdot \frac{1}{4} \sum_{k=1}^{21} (3 \cos(k\pi/3) + \cos(k\pi)) = 2 \left[ 3 \sum_{k=1}^{21} \cos(k\pi/3) + \sum_{k=1}^{21} (-1)^k \right]$.
- $\sum_{k=1}^{21} \cos(k\pi/3)$: The period is $6$. Sum over one period is $0$. $21 = 3 \times 6 + 3$.
The sum is $\sum_{k=1}^3 \cos(k\pi/3) = \cos(60^\circ) + \cos(120^\circ) + \cos(180^\circ) = \frac{1}{2} - \frac{1}{2} - 1 = -1$.
- $\sum_{k=1}^{21} (-1)^k = -1$ (since 21 is odd).
$S = 2[3(-1) + (-1)] = 2[-4] = -8$.
Final value $= 21 + S = 21 - 8 = 13$. Step 3: Final Answer:
The final value is 13.