We are given the differential equation:
\[
\frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x
\]
First, let's simplify the equation:
\[
\frac{dy}{dx} = \sec^2 x - 3y (\tan^2 x + 1)
\]
Using the identity \( \tan^2 x + 1 = \sec^2 x \), we get:
\[
\frac{dy}{dx} = \sec^2 x - 3y \sec^2 x = \sec^2 x (1 - 3y)
\]
Now, this is a separable differential equation. We can separate the variables:
\[
\frac{dy}{1 - 3y} = \sec^2 x \, dx
\]
Integrating both sides:
\[
\int \frac{1}{1 - 3y} \, dy = \int \sec^2 x \, dx
\]
The integrals give:
\[
-\frac{1}{3} \ln |1 - 3y| = \tan x + C
\]
Using the initial condition \( f(0) = \frac{e^3}{3} + 1 \), substitute \( x = 0 \) and solve for \( C \):
\[
-\frac{1}{3} \ln \left| 1 - 3 \left( \frac{e^3}{3} + 1 \right) \right| = \tan 0 + C
\]
Simplifying the above gives the constant \( C \).
Finally, substitute \( x = \frac{\pi}{4} \) and calculate \( f\left( \frac{\pi}{4} \right) \). This yields:
\[
f\left( \frac{\pi}{4} \right) = \frac{1}{3} \left( 1 + \frac{1}{e^3} \right)
\]