Question:

Let \(\{x\}\) denote the fractional part of \(x\), and \(f(x) = \frac{\cos^{-1}(1 - \{x\}^2) \sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}, \quad x \neq 0\).If \(L\) and \(R\) respectively denote the left-hand limit and the right-hand limit of \(f(x)\) at \(x = 0\), then  \(\frac{32}{\pi^2} \left(L^2 + R^2\right)\) is equal to \(\_\_\_\_\_\_\_\_\).

Updated On: Nov 4, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Correct Answer: 18

Solution and Explanation

The problem asks to find the value of the expression \( \frac{32}{\pi^2}(L^2 + R^2) \), where L and R are the left-hand limit and right-hand limit, respectively, of the function \( f(x) = \frac{\cos^{-1}(1-\{x\}^2) \sin^{-1}(1-\{x\})}{\{x\}-\{x\}^3} \) at \( x=0 \). Here, \( \{x\} \) denotes the fractional part of \( x \).

Concept Used:

1. Fractional Part Function ({x}): The fractional part of \( x \) is defined as \( \{x\} = x - \lfloor x \rfloor \), where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). The behavior of \( \{x\} \) around an integer is key:

  • For the right-hand limit as \( x \to 0^+ \) (e.g., x = 0.001), \( \lfloor x \rfloor = 0 \), so \( \{x\} = x \).
  • For the left-hand limit as \( x \to 0^- \) (e.g., x = -0.001), \( \lfloor x \rfloor = -1 \), so \( \{x\} = x - (-1) = 1+x \).

2. Standard Limits in Calculus: We will use the following standard limits:

\[ \lim_{\theta \to 0} \frac{\sin^{-1}(\theta)}{\theta} = 1 \] \[ \lim_{y \to 0^+} \frac{\cos^{-1}(1-y)}{\sqrt{y}} = \sqrt{2} \]

This second limit can be derived using L'Hôpital's rule or by substituting \( 1-y = \cos\theta \).

Step-by-Step Solution:

Step 1: Calculate the Right-Hand Limit (R) at \( x = 0 \).

As \( x \to 0^+ \), we substitute \( \{x\} = x \).

\[ R = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\cos^{-1}(1-x^2) \sin^{-1}(1-x)}{x - x^3} \]

We can factor the denominator and separate the limit into two parts:

\[ R = \lim_{x \to 0^+} \frac{\cos^{-1}(1-x^2)}{x} \cdot \lim_{x \to 0^+} \frac{\sin^{-1}(1-x)}{1-x^2} \]

For the second part, as \( x \to 0^+ \), \( \sin^{-1}(1-x) \to \sin^{-1}(1) = \frac{\pi}{2} \) and \( 1-x^2 \to 1 \). So, the second limit is \( \frac{\pi/2}{1} = \frac{\pi}{2} \).

For the first part, let \( y = x^2 \). As \( x \to 0^+ \), \( y \to 0^+ \) and \( x = \sqrt{y} \). The limit becomes:

\[ \lim_{y \to 0^+} \frac{\cos^{-1}(1-y)}{\sqrt{y}} \]

This is a standard limit which evaluates to \( \sqrt{2} \).

Combining the results:

\[ R = \sqrt{2} \cdot \frac{\pi}{2} = \frac{\pi}{\sqrt{2}} \]

Step 2: Calculate the Left-Hand Limit (L) at \( x = 0 \).

As \( x \to 0^- \), we substitute \( \{x\} = 1+x \). To make the limit easier to evaluate, let \( x = -h \), where \( h \to 0^+ \). Then \( \{x\} = \{-h\} = 1-h \).

\[ L = \lim_{h \to 0^+} \frac{\cos^{-1}(1-(1-h)^2) \sin^{-1}(1-(1-h))}{(1-h) - (1-h)^3} \]

Simplify the terms in the numerator and denominator:

\[ \sin^{-1}(1-(1-h)) = \sin^{-1}(h) \] \[ \cos^{-1}(1-(1-h)^2) = \cos^{-1}(1 - (1-2h+h^2)) = \cos^{-1}(2h-h^2) \] \[ (1-h) - (1-h)^3 = (1-h)(1-(1-h)^2) = (1-h)(2h-h^2) = h(1-h)(2-h) \]

The expression for L becomes:

\[ L = \lim_{h \to 0^+} \frac{\cos^{-1}(2h-h^2) \sin^{-1}(h)}{h(1-h)(2-h)} \]

Separate the limit into parts:

\[ L = \left( \lim_{h \to 0^+} \frac{\sin^{-1}(h)}{h} \right) \cdot \left( \lim_{h \to 0^+} \frac{\cos^{-1}(2h-h^2)}{(1-h)(2-h)} \right) \]

Evaluate each part:

  • \( \lim_{h \to 0^+} \frac{\sin^{-1}(h)}{h} = 1 \) (standard limit).
  • For the second part, substitute \( h = 0 \): \( \frac{\cos^{-1}(0)}{(1-0)(2-0)} = \frac{\pi/2}{2} = \frac{\pi}{4} \).

Combining the results:

\[ L = 1 \cdot \frac{\pi}{4} = \frac{\pi}{4} \]

Final Computation & Result:

Step 3: Substitute the values of L and R into the given expression.

We found \( L = \frac{\pi}{4} \) and \( R = \frac{\pi}{\sqrt{2}} \).

First, calculate \( L^2 \) and \( R^2 \):

\[ L^2 = \left(\frac{\pi}{4}\right)^2 = \frac{\pi^2}{16} \] \[ R^2 = \left(\frac{\pi}{\sqrt{2}}\right)^2 = \frac{\pi^2}{2} \]

Now, calculate their sum:

\[ L^2 + R^2 = \frac{\pi^2}{16} + \frac{\pi^2}{2} = \frac{\pi^2 + 8\pi^2}{16} = \frac{9\pi^2}{16} \]

Finally, compute the required value:

\[ \frac{32}{\pi^2} (L^2 + R^2) = \frac{32}{\pi^2} \left( \frac{9\pi^2}{16} \right) \] \[ = \frac{32}{16} \times \frac{\pi^2}{\pi^2} \times 9 = 2 \times 1 \times 9 = 18 \]

The value of the expression is 18.

Was this answer helpful?
0
0

Questions Asked in JEE Main exam

View More Questions