We are given the vectors:
$$\vec{p} = 2\hat{i} - 3\hat{j} - \hat{k}$$
$$\vec{q} = -3\hat{i} + 4\hat{j} + \hat{k}$$
$$\vec{r} = \hat{i} + \hat{j} + 2\hat{k}$$
We need to find scalars \( \lambda \) and \( \mu \) such that \( \vec{r} = \lambda \vec{p} + \mu \vec{q} \).
Substituting the vectors:
$$\hat{i} + \hat{j} + 2\hat{k} = \lambda (2\hat{i} - 3\hat{j} - \hat{k}) + \mu (-3\hat{i} + 4\hat{j} + \hat{k})$$
$$\hat{i} + \hat{j} + 2\hat{k} = (2\lambda - 3\mu)\hat{i} + (-3\lambda + 4\mu)\hat{j} + (-\lambda + \mu)\hat{k}$$
Equating the coefficients of \( \hat{i}, \hat{j}, \) and \( \hat{k} \), we get the following system of linear equations:
$$2\lambda - 3\mu = 1 \quad (1)$$
$$-3\lambda + 4\mu = 1 \quad (2)$$
$$-\lambda + \mu = 2 \quad (3)$$
From equation (3), we can express \( \mu \) in terms of \( \lambda \):
$$\mu = \lambda + 2$$
Substitute this into equation (1):
$$2\lambda - 3(\lambda + 2) = 1$$
$$2\lambda - 3\lambda - 6 = 1$$
$$-\lambda = 7$$
$$\lambda = -7$$
Now, substitute the value of \( \lambda \) back into the expression for \( \mu \):
$$\mu = -7 + 2$$
$$\mu = -5$$
To verify, substitute \( \lambda = -7 \) and \( \mu = -5 \) into equation (2):
$$-3(-7) + 4(-5) = 21 - 20 = 1$$
The values satisfy all three equations.
Thus, \( \vec{r} = -7\vec{p} - 5\vec{q} \), with \( \lambda = -7 \) and \( \mu = -5 \).