For two lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$ to be coplanar, the scalar triple product must be zero: \[ (\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) = 0 \] If $(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) \neq 0$, the lines are not coplanar (skew). Thus, Assertion (A) is false. The shortest distance between two skew lines is: \[ d = \frac{|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})|}{|\mathbf{b} \times \mathbf{q}|} \] Thus, $|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})| = |\mathbf{b} \times \mathbf{q}| \cdot d$, so Reason (R) is true. Since (A) is false, (R) cannot explain (A). Option (4) is correct. Options (1), (2), and (3) are incorrect due to the falsity of (A).