Question:

Assertion (A): For the lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$, if $(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) \neq 0$, then the two lines are coplanar. Reason (R): $|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})|$ is $|\mathbf{b} \times \mathbf{q}|$ times the shortest distance between the lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$.

Show Hint

Lines are coplanar if $(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) = 0$. The shortest distance formula uses the scalar triple product divided by $|\mathbf{b} \times \mathbf{q}|$.
Updated On: Jun 5, 2025
  • (A) is true, (R) is true, and (R) is the correct explanation to (A)
  • (A) is true, (R) is true, and (R) is not the correct explanation to (A)
  • (A) is true, (R) is false
  • (A) is false, (R) is true
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

For two lines $\mathbf{r} = \mathbf{a} + t \mathbf{b}$ and $\mathbf{r} = \mathbf{p} + s \mathbf{q}$ to be coplanar, the scalar triple product must be zero: \[ (\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) = 0 \] If $(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q}) \neq 0$, the lines are not coplanar (skew). Thus, Assertion (A) is false. The shortest distance between two skew lines is: \[ d = \frac{|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})|}{|\mathbf{b} \times \mathbf{q}|} \] Thus, $|(\mathbf{a} - \mathbf{p}) \cdot (\mathbf{b} \times \mathbf{q})| = |\mathbf{b} \times \mathbf{q}| \cdot d$, so Reason (R) is true. Since (A) is false, (R) cannot explain (A). Option (4) is correct. Options (1), (2), and (3) are incorrect due to the falsity of (A).
Was this answer helpful?
0
0

Top Questions on Vectors

View More Questions

AP EAPCET Notification