To solve the problem, we need to find which value of \( \mathbf{p} \cdot \mathbf{q} \) is not possible given that \( \mathbf{p} \) and \( \mathbf{q} \) are unit vectors.
1. Understanding the Dot Product of Unit Vectors:
The dot product of two vectors \( \mathbf{p} \) and \( \mathbf{q} \) is defined as:
\( \mathbf{p} \cdot \mathbf{q} = |\mathbf{p}| |\mathbf{q}| \cos \theta \)
Since both vectors are unit vectors, \( |\mathbf{p}| = 1 \) and \( |\mathbf{q}| = 1 \), so:
\( \mathbf{p} \cdot \mathbf{q} = \cos \theta \)
This means the value of the dot product must lie between \( -1 \) and \( 1 \), inclusive.
2. Evaluating Each Option:
(A) \( -\frac{1}{2} \) → Lies within the range [–1, 1] → Possible
(B) \( \frac{1}{\sqrt{2}} \approx 0.707 \) → Lies within the range [–1, 1] → Possible
(C) \( \frac{\sqrt{3}}{2} \approx 0.866 \) → Lies within the range [–1, 1] → Possible
(D) \( \sqrt{3} \approx 1.732 \) → Outside the allowed range → Not Possible
3. Conclusion:
The value \( \sqrt{3} \) is greater than 1 and hence not possible as a dot product of two unit vectors.
Final Answer:
The value of \( \mathbf{p} \cdot \mathbf{q} \) that is not possible is \( \sqrt{3} \).
Simar, Tanvi, and Umara were partners in a firm sharing profits and losses in the ratio of 5 : 6 : 9. On 31st March, 2024, their Balance Sheet was as follows:
Liabilities | Amount (₹) | Assets | Amount (₹) |
Capitals: | Fixed Assets | 25,00,000 | |
Simar | 13,00,000 | Stock | 10,00,000 |
Tanvi | 12,00,000 | Debtors | 8,00,000 |
Umara | 14,00,000 | Cash | 7,00,000 |
General Reserve | 7,00,000 | Profit and Loss A/c | 2,00,000 |
Trade Payables | 6,00,000 | ||
Total | 52,00,000 | Total | 52,00,000 |
Umara died on 30th June, 2024. The partnership deed provided for the following on the death of a partner: