Step 1. \( \vec{d} = \lambda (\vec{b} + \vec{c}) \), where \( \lambda \) is a scalar constant.
Given \( \vec{a} \cdot \vec{d} = 1 \):
Substituting:
\( \vec{a} \cdot \vec{d} = \lambda (\vec{a} \cdot (\vec{b} + \vec{c})) \).
\( 1 = \lambda (\vec{a} \cdot (\vec{b} + \vec{c})) = \lambda (1 + x + 5) \).
Simplify:
\( 1 = \lambda (x + 6) \quad \dots \, (1). \)
Step 2. Since \( |\vec{d}| = 1 \):
\( |\vec{d}| = |\lambda (\vec{b} + \vec{c})| = 1 \).
Substituting \( \lambda = \frac{1}{x+6} \):
\( \left| \frac{1}{x+6} (\vec{b} + \vec{c}) \right| = 1 \).
Simplify:
\( |\vec{b} + \vec{c}|^2 = (x+6)^2 \).
Expand \( \vec{b} + \vec{c} = (2 + x)\hat{i} + 6\hat{j} - 2\hat{k} \):
\( |\vec{b} + \vec{c}|^2 = (x+2)^2 + 6^2 + (-2)^2 = x^2 + 4x + 4 + 36 + 4 \).
Equate:
\( x^2 + 4x + 44 = (x+6)^2 = x^2 + 12x + 36. \)
Simplify:
\( 8x = 8 \implies x = 1. \)
Step 3. Calculate \( (\vec{a} \times \vec{b}) \cdot \vec{c} \):
Expand:
\( \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -5 \end{vmatrix}. \)
Simplify:
\( \vec{a} \times \vec{b} = \hat{i}(1 \cdot -5 - 1 \cdot 4) - \hat{j}(1 \cdot -5 - 1 \cdot 2) + \hat{k}(1 \cdot 4 - 1 \cdot 2). \)
\( \vec{a} \times \vec{b} = -9\hat{i} + 3\hat{j} + 2\hat{k}. \)
Now:
\( (\vec{a} \times \vec{b}) \cdot \vec{c} = (-9)(1) + (3)(2) + (2)(3). \)
Simplify:
\( (\vec{a} \times \vec{b}) \cdot \vec{c} = 20 - 9 = 11. \)
Option (4) is correct.
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)