Let \( \vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k} \), \( \alpha, \beta \in \mathbb{R} \). Let a vector \( \vec{b} \) be such that the angle between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \) and \( |\vec{b}|^2 = 6 \),
If \( \vec{a} \times\vec{b} = 3\sqrt{2} \), then the value of \( \left( \alpha^2 + \beta^2 \right) | \vec{a} \times \vec{b} |^2 \) is equal to
Using \(\vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \cos \theta\):
\(3\sqrt{2} = |\vec{a}| \times 6 \times \frac{\sqrt{2}}{2} \Rightarrow |\vec{a}| = 1.\)
Since \(|\vec{a}|^2 = 1\), we have \(1 + \alpha^2 + \beta^2 = 1 \Rightarrow \alpha^2 + \beta^2 = 5.\)
For \(|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta\):
\(|\vec{a} \times \vec{b}| = 1 \times 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}.\)
Thus, \((\alpha^2 + \beta^2)|\vec{a} \times \vec{b}|^2 = 5 \times 18 = 90.\)
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).