Let \( \vec{a} = \hat{i} + \alpha \hat{j} + \beta \hat{k} \), \( \alpha, \beta \in \mathbb{R} \). Let a vector \( \vec{b} \) be such that the angle between \( \vec{a} \) and \( \vec{b} \) is \( \frac{\pi}{4} \) and \( |\vec{b}|^2 = 6 \),
If \( \vec{a} \times\vec{b} = 3\sqrt{2} \), then the value of \( \left( \alpha^2 + \beta^2 \right) | \vec{a} \times \vec{b} |^2 \) is equal to
Using \(\vec{a} \times \vec{b} = |\vec{a}||\vec{b}| \cos \theta\):
\(3\sqrt{2} = |\vec{a}| \times 6 \times \frac{\sqrt{2}}{2} \Rightarrow |\vec{a}| = 1.\)
Since \(|\vec{a}|^2 = 1\), we have \(1 + \alpha^2 + \beta^2 = 1 \Rightarrow \alpha^2 + \beta^2 = 5.\)
For \(|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}| \sin \theta\):
\(|\vec{a} \times \vec{b}| = 1 \times 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}.\)
Thus, \((\alpha^2 + \beta^2)|\vec{a} \times \vec{b}|^2 = 5 \times 18 = 90.\)
To solve the problem, let's break it down step-by-step using vector algebra and trigonometry principles.
Therefore, the value of \((\alpha^2 + \beta^2) |\vec{a} \times \vec{b}|^2\) is 90.
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 