Let: $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be there vectors If $\vec{r}$ is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^2$ is equal to
We are given the following vectors: \[ \mathbf{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}, \quad \mathbf{c} = 5\hat{i} - 3\hat{j} + 3\hat{k}. \] Step 1: We know that \( \mathbf{r} \times \mathbf{b} = \mathbf{c} \times \mathbf{b} \) and \( \mathbf{r} \cdot \mathbf{a} = 0 \). From the condition \( \mathbf{r} \times \mathbf{b} = \mathbf{c} \times \mathbf{b} \), we have: \[ \mathbf{r} - \mathbf{c} = \lambda \mathbf{b} \quad \text{(where \( \lambda \) is a constant)}. \] Step 2: Next, substitute the expression for \( \mathbf{r} \): \[ \mathbf{r} = \mathbf{c} + \lambda \mathbf{b}. \] Substituting the values of \( \mathbf{c} \) and \( \mathbf{b} \), we get: \[ \mathbf{r} = 5\hat{i} - 3\hat{j} + 3\hat{k} + \lambda (\hat{i} - \hat{j} + 2\hat{k}). \] Thus, the vector \( \mathbf{r} \) is: \[ \mathbf{r} = (5 + \lambda)\hat{i} + (-3 - \lambda)\hat{j} + (3 + 2\lambda)\hat{k}. \] Step 3: Using the condition \( \mathbf{r} \cdot \mathbf{a} = 0 \), we calculate the dot product: \[ \mathbf{r} \cdot \mathbf{a} = (5 + \lambda)(1) + (-3 - \lambda)(2) + (3 + 2\lambda)(3). \] Simplifying: \[ \mathbf{r} \cdot \mathbf{a} = 5 + \lambda - 6 - 2\lambda + 9 + 6\lambda = 8 + 5\lambda = 0. \] Thus, solving for \( \lambda \), we get: \[ 5\lambda = -8 \quad \Rightarrow \quad \lambda = -\frac{8}{5}. \] Step 4: Substitute \( \lambda = -\frac{8}{5} \) into the expression for \( \mathbf{r} \): \[ \mathbf{r} = \left( 5 - \frac{8}{5} \right) \hat{i} + \left( -3 + \frac{8}{5} \right) \hat{j} + \left( 3 - \frac{16}{5} \right) \hat{k}. \] Simplifying: \[ \mathbf{r} = \frac{17}{5} \hat{i} - \frac{7}{5} \hat{j} + \frac{1}{5} \hat{k}. \] Step 5: Now, calculate \( |\mathbf{r}|^2 \): \[ |\mathbf{r}|^2 = \left( \frac{17}{5} \right)^2 + \left( \frac{-7}{5} \right)^2 + \left( \frac{1}{5} \right)^2 = \frac{289}{25} + \frac{49}{25} + \frac{1}{25} = \frac{339}{25}. \] Thus: \[ 25|\mathbf{r}|^2 = 25 \times \frac{339}{25} = 339. \]
Let \( \vec{a} \) and \( \vec{b} \) be two co-initial vectors forming adjacent sides of a parallelogram such that:
\[
|\vec{a}| = 10, \quad |\vec{b}| = 2, \quad \vec{a} \cdot \vec{b} = 12
\]
Find the area of the parallelogram.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).
A vector is an object which has both magnitudes and direction. It is usually represented by an arrow which shows the direction(→) and its length shows the magnitude. The arrow which indicates the vector has an arrowhead and its opposite end is the tail. It is denoted as
The magnitude of the vector is represented as |V|. Two vectors are said to be equal if they have equal magnitudes and equal direction.
Arithmetic operations such as addition, subtraction, multiplication on vectors. However, in the case of multiplication, vectors have two terminologies, such as dot product and cross product.