Let: $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be there vectors If $\vec{r}$ is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^2$ is equal to
We are given the following vectors: \[ \mathbf{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \mathbf{b} = \hat{i} - \hat{j} + 2\hat{k}, \quad \mathbf{c} = 5\hat{i} - 3\hat{j} + 3\hat{k}. \] Step 1: We know that \( \mathbf{r} \times \mathbf{b} = \mathbf{c} \times \mathbf{b} \) and \( \mathbf{r} \cdot \mathbf{a} = 0 \). From the condition \( \mathbf{r} \times \mathbf{b} = \mathbf{c} \times \mathbf{b} \), we have: \[ \mathbf{r} - \mathbf{c} = \lambda \mathbf{b} \quad \text{(where \( \lambda \) is a constant)}. \] Step 2: Next, substitute the expression for \( \mathbf{r} \): \[ \mathbf{r} = \mathbf{c} + \lambda \mathbf{b}. \] Substituting the values of \( \mathbf{c} \) and \( \mathbf{b} \), we get: \[ \mathbf{r} = 5\hat{i} - 3\hat{j} + 3\hat{k} + \lambda (\hat{i} - \hat{j} + 2\hat{k}). \] Thus, the vector \( \mathbf{r} \) is: \[ \mathbf{r} = (5 + \lambda)\hat{i} + (-3 - \lambda)\hat{j} + (3 + 2\lambda)\hat{k}. \] Step 3: Using the condition \( \mathbf{r} \cdot \mathbf{a} = 0 \), we calculate the dot product: \[ \mathbf{r} \cdot \mathbf{a} = (5 + \lambda)(1) + (-3 - \lambda)(2) + (3 + 2\lambda)(3). \] Simplifying: \[ \mathbf{r} \cdot \mathbf{a} = 5 + \lambda - 6 - 2\lambda + 9 + 6\lambda = 8 + 5\lambda = 0. \] Thus, solving for \( \lambda \), we get: \[ 5\lambda = -8 \quad \Rightarrow \quad \lambda = -\frac{8}{5}. \] Step 4: Substitute \( \lambda = -\frac{8}{5} \) into the expression for \( \mathbf{r} \): \[ \mathbf{r} = \left( 5 - \frac{8}{5} \right) \hat{i} + \left( -3 + \frac{8}{5} \right) \hat{j} + \left( 3 - \frac{16}{5} \right) \hat{k}. \] Simplifying: \[ \mathbf{r} = \frac{17}{5} \hat{i} - \frac{7}{5} \hat{j} + \frac{1}{5} \hat{k}. \] Step 5: Now, calculate \( |\mathbf{r}|^2 \): \[ |\mathbf{r}|^2 = \left( \frac{17}{5} \right)^2 + \left( \frac{-7}{5} \right)^2 + \left( \frac{1}{5} \right)^2 = \frac{289}{25} + \frac{49}{25} + \frac{1}{25} = \frac{339}{25}. \] Thus: \[ 25|\mathbf{r}|^2 = 25 \times \frac{339}{25} = 339. \]
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is
List-I | List-II |
---|---|
(A) 4î − 2ĵ − 4k̂ | (I) A vector perpendicular to both î + 2ĵ + k̂ and 2î + 2ĵ + 3k̂ |
(B) 4î − 4ĵ + 2k̂ | (II) Direction ratios are −2, 1, 2 |
(C) 2î − 4ĵ + 4k̂ | (III) Angle with the vector î − 2ĵ − k̂ is cos⁻¹(1/√6) |
(D) 4î − ĵ − 2k̂ | (IV) Dot product with −2î + ĵ + 3k̂ is 10 |
Consider the following cell: $ \text{Pt}(s) \, \text{H}_2 (1 \, \text{atm}) | \text{H}^+ (1 \, \text{M}) | \text{Cr}_2\text{O}_7^{2-}, \, \text{Cr}^{3+} | \text{H}^+ (1 \, \text{M}) | \text{Pt}(s) $
Given: $ E^\circ_{\text{Cr}_2\text{O}_7^{2-}/\text{Cr}^{3+}} = 1.33 \, \text{V}, \quad \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
At equilibrium: $ \left[ \text{Cr}^{3+} \right]^2 / \left[ \text{Cr}_2\text{O}_7^{2-} \right] = 10^{-7} $
Objective: $ \text{Determine the pH at the cathode where } E_{\text{cell}} = 0. $
A vector is an object which has both magnitudes and direction. It is usually represented by an arrow which shows the direction(→) and its length shows the magnitude. The arrow which indicates the vector has an arrowhead and its opposite end is the tail. It is denoted as
The magnitude of the vector is represented as |V|. Two vectors are said to be equal if they have equal magnitudes and equal direction.
Arithmetic operations such as addition, subtraction, multiplication on vectors. However, in the case of multiplication, vectors have two terminologies, such as dot product and cross product.