To solve this problem, we need to determine the value of \(3\lambda\) given the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), and the condition \(\vec{r} \cdot \vec{a} = 3\), where \(\vec{r}\) is a unit vector along the vector \(\vec{b} + \vec{c}\).
\(\vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}\) and \(\vec{c} = 3\hat{i} - \hat{j} + \lambda\hat{k}\).
Therefore, \[ \vec{b} + \vec{c} = (2 + 3)\hat{i} + (3 - 1)\hat{j} + (-5 + \lambda)\hat{k} = 5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k} \]
The magnitude is given by:
\[ = \sqrt{25 + 4 + (\lambda^2 - 10\lambda + 25)} = \sqrt{\lambda^2 - 10\lambda + 54} \]
\[ \vec{r} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = \frac{5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}}{\sqrt{\lambda^2 - 10\lambda + 54}} \]
\(\vec{r} \cdot \vec{a} = 3\), where \(\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}\).
So,
\[ \frac{(5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}) \cdot (\hat{i} + 2\hat{j} + 3\hat{k})}{\sqrt{\lambda^2 - 10\lambda + 54}} = 3 \]
Simplifying the dot product:
\[ (5)(1) + (2)(2) + ((\lambda - 5)(3)) = 5 + 4 + 3\lambda - 15 \]
\[ = 3\lambda - 6 \]
\[ \frac{3\lambda - 6}{\sqrt{\lambda^2 - 10\lambda + 54}} = 3 \]
Solving for \(\lambda\), multiply both sides by \(\sqrt{\lambda^2 - 10\lambda + 54}\):
\[ 3\lambda - 6 = 3\sqrt{\lambda^2 - 10\lambda + 54} \]
Divide the equation by 3:
\[ \lambda - 2 = \sqrt{\lambda^2 - 10\lambda + 54} \]
\[ (\lambda - 2)^2 = \lambda^2 - 10\lambda + 54 \]
Expanding the left side:
\[ \lambda^2 - 4\lambda + 4 = \lambda^2 - 10\lambda + 54 \]
By eliminating \(\lambda^2\) and simplifying:
\[ -4\lambda + 4 = -10\lambda + 54 \]
\[ 6\lambda = 50 \]
Thus, \(\lambda = \frac{50}{6} = \frac{25}{3}\).
\[ 3\left(\frac{25}{3}\right) = 25 \]
Therefore, \(3\lambda\) is equal to 25, which matches the correct answer option.
Given vectors:
\[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}, \quad \vec{c} = 3\hat{i} - \hat{j} + \lambda \hat{k}. \]
The sum of vectors \(\vec{b} + \vec{c}\) is given by:
\[ \vec{b} + \vec{c} = (2\hat{i} + 3\hat{j} - 5\hat{k}) + (3\hat{i} - \hat{j} + \lambda \hat{k}) = (5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}). \] The magnitude of \(\vec{b} + \vec{c}\) is: \[ |\vec{b} + \vec{c}| = \sqrt{5^2 + 2^2 + (\lambda - 5)^2} = \sqrt{25 + 4 + (\lambda - 5)^2}. \]
Simplifying:
\[ |\vec{b} + \vec{c}| = \sqrt{29 + (\lambda - 5)^2}. \]
The unit vector along \(\vec{b} + \vec{c}\) is:
\[ \vec{r} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = \frac{5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}}{\sqrt{29 + (\lambda - 5)^2}}. \] Given that \(\vec{r} \cdot \vec{a} = 3\),
we have: \[ \frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 \cdot 1 + 2 \cdot 2 + 3 \cdot (\lambda - 5)) = 3. \]
Simplifying:
\[ \frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 + 4 + 3\lambda - 15) = 3. \]
\[ \frac{3\lambda - 6}{\sqrt{29 + (\lambda - 5)^2}} = 3. \]
Cross-multiplying:
\[ \lambda - 2 = \sqrt{29 + (\lambda - 5)^2}. \]
Squaring both sides:
\[ (\lambda - 2)^2 = 29 + (\lambda - 5)^2. \]
Expanding both sides:
\[ \lambda^2 - 4\lambda + 4 = 29 + \lambda^2 - 10\lambda + 25. \] Simplifying:
\[ -4\lambda + 4 = 54 - 10\lambda. \]
Rearranging terms:
\[ 6\lambda = 50 \implies \lambda = \frac{50}{6} = \frac{25}{3}. \]
Thus:
\[ 3\lambda = 3 \times \frac{25}{3} = 25. \] Therefore:
\[ 25. \]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.