Given vectors:
\[ \vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \vec{b} = 2\hat{i} + 3\hat{j} - 5\hat{k}, \quad \vec{c} = 3\hat{i} - \hat{j} + \lambda \hat{k}. \]
The sum of vectors \(\vec{b} + \vec{c}\) is given by:
\[ \vec{b} + \vec{c} = (2\hat{i} + 3\hat{j} - 5\hat{k}) + (3\hat{i} - \hat{j} + \lambda \hat{k}) = (5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}). \] The magnitude of \(\vec{b} + \vec{c}\) is: \[ |\vec{b} + \vec{c}| = \sqrt{5^2 + 2^2 + (\lambda - 5)^2} = \sqrt{25 + 4 + (\lambda - 5)^2}. \]
Simplifying:
\[ |\vec{b} + \vec{c}| = \sqrt{29 + (\lambda - 5)^2}. \]
The unit vector along \(\vec{b} + \vec{c}\) is:
\[ \vec{r} = \frac{\vec{b} + \vec{c}}{|\vec{b} + \vec{c}|} = \frac{5\hat{i} + 2\hat{j} + (\lambda - 5)\hat{k}}{\sqrt{29 + (\lambda - 5)^2}}. \] Given that \(\vec{r} \cdot \vec{a} = 3\),
we have: \[ \frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 \cdot 1 + 2 \cdot 2 + 3 \cdot (\lambda - 5)) = 3. \]
Simplifying:
\[ \frac{1}{\sqrt{29 + (\lambda - 5)^2}} (5 + 4 + 3\lambda - 15) = 3. \]
\[ \frac{3\lambda - 6}{\sqrt{29 + (\lambda - 5)^2}} = 3. \]
Cross-multiplying:
\[ \lambda - 2 = \sqrt{29 + (\lambda - 5)^2}. \]
Squaring both sides:
\[ (\lambda - 2)^2 = 29 + (\lambda - 5)^2. \]
Expanding both sides:
\[ \lambda^2 - 4\lambda + 4 = 29 + \lambda^2 - 10\lambda + 25. \] Simplifying:
\[ -4\lambda + 4 = 54 - 10\lambda. \]
Rearranging terms:
\[ 6\lambda = 50 \implies \lambda = \frac{50}{6} = \frac{25}{3}. \]
Thus:
\[ 3\lambda = 3 \times \frac{25}{3} = 25. \] Therefore:
\[ 25. \]
A vector has magnitude same as that of A = \(-3\hat{i} + 4\hat{j}\) and is parallel to B = \(4\hat{i} + 3\hat{j}\). The x and y components of this vector in the first quadrant are x and y respectively where:
\(x = \_\_\_\_\).
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is: