Step 1: We start with the equation for the dot product of vectors \( \vec{b} \) and \( \vec{c} \):
\[ \vec{b} \cdot \vec{c} = (2\vec{a} \times \vec{b}) \cdot \vec{b} - 3|\vec{b}|^2 \]
Step 2: The magnitude of vector \( \vec{b} \) and the dot product of \( \vec{b} \) and \( \vec{c} \) are given as:
\[ |\vec{b}||\vec{c}| \cos \alpha = -3|\vec{b}|^2 \]
Substitute the known value of \( |\vec{b}| = 4 \):
\[ |\vec{b}| |\vec{c}| \cos \alpha = -12, \quad \text{where} \quad |\vec{b}| = 4 \]
Step 3: The dot product of vectors \( \vec{a} \) and \( \vec{b} \) is given:
\[ \vec{a} \cdot \vec{b} = 2 \]
Step 4: We now use the cosine identity to find \( \theta \):
\[ \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} \]
Step 5: The magnitude of \( \vec{c} \) is given as:
\[ |\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 \]
We calculate each term of this expression:
\[ = 64 \times \frac{3}{4} + 144 = 192 \]
Step 6: Substituting in \( \cos^2 \alpha \), we get:
\[ |\vec{c}|^2 \cos^2 \alpha = 144 \]
Step 7: Now, solving for \( \sin^2 \alpha \), we get:
\[ 192 \cos^2 \alpha = 144 \quad \Rightarrow \quad 192 \sin^2 \alpha = 48 \]
Given:
\[ \vec{b} \cdot \vec{c} = \left( 2\vec{a} \times \vec{b} \right) \cdot \vec{b} - 3|\vec{b}|^2 \]
We know:
\[ |\vec{b}||\vec{c}| \cos \alpha = -12, \quad \text{as } |\vec{b}| = 4, \; \vec{a} \cdot \vec{b} = 2 \]
Calculate:
\[ \cos \alpha = \frac{1}{2}, \quad \alpha = \frac{\pi}{3} \]
Now:
\[ |\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 = 64 \times \frac{3}{4} + 144 = 192 \]
Therefore:
\[ 192 \cos^2 \alpha = 144, \quad 192 \sin^2 \alpha = 48 \]
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 