Step 1: We start with the equation for the dot product of vectors \( \vec{b} \) and \( \vec{c} \):
\[ \vec{b} \cdot \vec{c} = (2\vec{a} \times \vec{b}) \cdot \vec{b} - 3|\vec{b}|^2 \]
Step 2: The magnitude of vector \( \vec{b} \) and the dot product of \( \vec{b} \) and \( \vec{c} \) are given as:
\[ |\vec{b}||\vec{c}| \cos \alpha = -3|\vec{b}|^2 \]
Substitute the known value of \( |\vec{b}| = 4 \):
\[ |\vec{b}| |\vec{c}| \cos \alpha = -12, \quad \text{where} \quad |\vec{b}| = 4 \]
Step 3: The dot product of vectors \( \vec{a} \) and \( \vec{b} \) is given:
\[ \vec{a} \cdot \vec{b} = 2 \]
Step 4: We now use the cosine identity to find \( \theta \):
\[ \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3} \]
Step 5: The magnitude of \( \vec{c} \) is given as:
\[ |\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 \]
We calculate each term of this expression:
\[ = 64 \times \frac{3}{4} + 144 = 192 \]
Step 6: Substituting in \( \cos^2 \alpha \), we get:
\[ |\vec{c}|^2 \cos^2 \alpha = 144 \]
Step 7: Now, solving for \( \sin^2 \alpha \), we get:
\[ 192 \cos^2 \alpha = 144 \quad \Rightarrow \quad 192 \sin^2 \alpha = 48 \]
Given:
\[ \vec{b} \cdot \vec{c} = \left( 2\vec{a} \times \vec{b} \right) \cdot \vec{b} - 3|\vec{b}|^2 \]
We know:
\[ |\vec{b}||\vec{c}| \cos \alpha = -12, \quad \text{as } |\vec{b}| = 4, \; \vec{a} \cdot \vec{b} = 2 \]
Calculate:
\[ \cos \alpha = \frac{1}{2}, \quad \alpha = \frac{\pi}{3} \]
Now:
\[ |\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 = 64 \times \frac{3}{4} + 144 = 192 \]
Therefore:
\[ 192 \cos^2 \alpha = 144, \quad 192 \sin^2 \alpha = 48 \]
A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field \( B \) exists into the page. The bar starts to move from the vertex at time \( t = 0 \) with a constant velocity. If the induced EMF is \( E \propto t^n \), then the value of \( n \) is _____. 