Given:
\[ \vec{b} \cdot \vec{c} = \left( 2\vec{a} \times \vec{b} \right) \cdot \vec{b} - 3|\vec{b}|^2 \]
We know:
\[ |\vec{b}||\vec{c}| \cos \alpha = -12, \quad \text{as } |\vec{b}| = 4, \; \vec{a} \cdot \vec{b} = 2 \]
Calculate:
\[ \cos \alpha = \frac{1}{2}, \quad \alpha = \frac{\pi}{3} \]
Now:
\[ |\vec{c}|^2 = |(2\vec{a} \times \vec{b}) - 3\vec{b}|^2 = 64 \times \frac{3}{4} + 144 = 192 \]
Therefore:
\[ 192 \cos^2 \alpha = 144, \quad 192 \sin^2 \alpha = 48 \]
If \( X \) is a random variable such that \( P(X = -2) = P(X = -1) = P(X = 2) = P(X = 1) = \frac{1}{6} \), and \( P(X = 0) = \frac{1}{3} \), then the mean of \( X \) is