Let \( \vec{a} \) and \( \vec{b} \) be two non-zero vectors. Prove that \( |\vec{a} \times \vec{b}| \leq |\vec{a}| |\vec{b}| \). State the condition under which equality holds, i.e., \( |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \).
Show Hint
The cross product reaches its maximum magnitude when the vectors are perpendicular.