1. Expression for the magnitude of the cross product:
\[
|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta,
\]
where \( \theta \) is the angle between \( \vec{a} \) and \( \vec{b} \).
2. Inequality:
The sine function satisfies:
\[
0 \leq \sin \theta \leq 1.
\]
Thus:
\[
|\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin \theta \leq |\vec{a}| |\vec{b}|.
\]
3. Equality condition:
Equality holds when:
\[
\sin \theta = 1 \quad \Rightarrow \quad \theta = \frac{\pi}{2}.
\]
This means \( \vec{a} \) and \( \vec{b} \) are perpendicular.
Final Answer:
\[
|\vec{a} \times \vec{b}| \leq |\vec{a}| |\vec{b}|, \quad {equality holds when \( \vec{a} \perp \vec{b} \)}.
\]