Given vectors:
\[ \overrightarrow{AB} = \hat{i} + 2\hat{j} - 7\hat{k}, \quad \overrightarrow{AC} = 6\hat{i} + d\hat{j} - 2\hat{k} \]
The cross product \(\overrightarrow{AB} \times \overrightarrow{AC}\) gives the area of the triangle \(ABC\) using the formula:
\[ \text{Area} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| \]
Given that the area is \(15\sqrt{2}\):
\[ 15\sqrt{2} = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| \]
Thus:
\[ \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = 30\sqrt{2} \]
Calculating the cross product:
\[ \overrightarrow{AB} \times \overrightarrow{AC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & -7 \\ 6 & d & -2 \end{vmatrix} \]
\[ = \hat{i}(2 \times -2 - (-7) \times d) - \hat{j}(1 \times -2 - (-7) \times 6) + \hat{k}(1 \times d - 2 \times 6) \]
Simplifying: \[ \overrightarrow{AB} \times \overrightarrow{AC} = \hat{i}(-4 + 7d) - \hat{j}(-2 + 42) + \hat{k}(d - 12) \]
\[ = (7d - 4)\hat{i} - 40\hat{j} + (d - 12)\hat{k} \]
The magnitude of the cross product is given by:
\[ \left| \overrightarrow{AB} \times \overrightarrow{AC} \right| = \sqrt{(7d - 4)^2 + (-40)^2 + (d - 12)^2} \]
Equating this to \(30\sqrt{2}\): \[ \sqrt{(7d - 4)^2 + 1600 + (d - 12)^2} = 30\sqrt{2} \]
Squaring both sides: \[ (7d - 4)^2 + 1600 + (d - 12)^2 = 1800 \]
Solving this equation gives the value of \(d\).
To find the square of the length of the largest side, we calculate:
\[ |\overrightarrow{AB}|^2 = 1^2 + 2^2 + (-7)^2 = 1 + 4 + 49 = 54 \]
Similarly, the length of \(\overrightarrow{AC}\) is calculated.
Thus, the square of the length of the largest side is: \[ 54 \]