Let the system of linear equations
$-x + 2y - 9z = 7$,
$-x + 3y + 72 = 9$,
$-2x + y + 5z = 8$,
$-3x + y + 13z = \lambda$
has a unique solution $x = \alpha, y = \beta, z = \gamma$. Then the distance of the point $(\alpha, \beta, \gamma)$ from the plane $2x - 2y + z = \lambda$ is:
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)