Step 1: For a non-trivial solution, the determinant of coefficients must be zero. 
Step 2: Expand along $R_1$: $4(-3-2) - \lambda(6-\mu) + 2(4+\mu) = 0$. $-20 - 6\lambda + \lambda\mu + 8 + 2\mu = 0$. $\mu(2+\lambda) - 6\lambda - 12 = 0 \implies \mu(2+\lambda) - 6(2+\lambda) = 0$.
Step 3: Factoring gives $(\mu - 6)(\lambda + 2) = 0$. This means either $\mu = 6$ or $\lambda = -2$. Checking options: (D) states $\mu = 6, \lambda \in R$.


