List - I | List - II | ||
(P) | α equals | (1) | (-2, 4) |
(Q) | r equals | (2) | \(\sqrt5\) |
(R) | A1 equals | (3) | (-2, 6) |
(S) | B1 equals | (4) | 5 |
(5) | (2, 4) |
The circle has center (0, α) and radius r. Its equation is:
x² + (y − α)² = r². (1)
The line y = 2x is tangent to the circle at point A₁. The condition for tangency is:
Perpendicular distance from center (0, α) to the line y = 2x = r.
The perpendicular distance is:
|2(0) − 1(α) + 0| / √(2² + 1²) = r.
Simplifying:
α / √5 = r. (2)
Given α + r = 5 + √5, we substitute:
α + (α / √5) = 5 + √5.
Rearrange:
α(1 + 1/√5) = 5 + √5.
Multiply by √5 on both sides:
α = √5(5 + √5) / (√5 + 1).
Rationalizing the denominator:
α = (5 + √5)(√5 − 1) / (5 − 1).
Simplify:
α = 5, r = √5.
The point A₁ lies on both the circle and the tangent y = 2x.
Substituting y = 2x into the circle equation:
x² + (2x − 5)² = 5.
Expanding:
x² + 4x² − 20x + 25 = 5.
5x² − 20x + 20 = 0.
Dividing by 5:
(x − 2)² = 0 → x = 2.
Substituting x = 2 into y = 2x:
y = 4.
Thus,
A₁ = (2, 4). (3)
A₁B₁ is a diameter, so B₁ is the reflection of A₁ about the center (0, 5).
Using the midpoint formula:
( (2 + x) / 2 , (4 + y) / 2 ) = (0, 5).
Solving:
2 + x = 0 → x = -2,
4 + y = 10 → y = 6.
Thus,
B₁ = (-2, 6). (4)
(P) α = 5 → (4),
(Q) r = √5 → (2),
(R) A₁ = (2, 4) → (5),
(S) B₁ = (-2, 6) → (3).