Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
1. Identify the points and direction vectors:
- Line 1: $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$
- Point $A(3, \alpha, 3)$
- Direction vector $\vec{p} = 3\hat{i} - \hat{j} + \hat{k}$
- Line 2: $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$
- Point $B(-3, -7, \beta)$
- Direction vector $\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}$
2. Calculate $\vec{p} \times \vec{q}$: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = 6\hat{i} + 15\hat{j} - 9\hat{k} \]
3. Calculate $\vec{BA}$: \[ \vec{BA} = (3 + 3)\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} = 6\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} \]
4. Use the distance formula: \[ \frac{|\vec{BA} \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = 3\sqrt{30} \] \[ \frac{|6 \cdot 6 + 15(\alpha + 7) - 9(3 - \beta)|}{\sqrt{6^2 + 15^2 + (-9)^2}} = 3\sqrt{30} \] \[ 36 + 15(\alpha + 7) - 9(3 - \beta) = 270 \] \[ 15\alpha + 3\beta = 138 \] \[ 5\alpha + \beta = 46 \] Therefore, the correct answer is (2) 46.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: