Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
1. Identify the points and direction vectors:
- Line 1: $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$
- Point $A(3, \alpha, 3)$
- Direction vector $\vec{p} = 3\hat{i} - \hat{j} + \hat{k}$
- Line 2: $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$
- Point $B(-3, -7, \beta)$
- Direction vector $\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}$
2. Calculate $\vec{p} \times \vec{q}$: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = 6\hat{i} + 15\hat{j} - 9\hat{k} \]
3. Calculate $\vec{BA}$: \[ \vec{BA} = (3 + 3)\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} = 6\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} \]
4. Use the distance formula: \[ \frac{|\vec{BA} \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = 3\sqrt{30} \] \[ \frac{|6 \cdot 6 + 15(\alpha + 7) - 9(3 - \beta)|}{\sqrt{6^2 + 15^2 + (-9)^2}} = 3\sqrt{30} \] \[ 36 + 15(\alpha + 7) - 9(3 - \beta) = 270 \] \[ 15\alpha + 3\beta = 138 \] \[ 5\alpha + \beta = 46 \] Therefore, the correct answer is (2) 46.
We are given two lines in symmetric form and the shortest distance between them is \(3\sqrt{30}\). Let
\[ L_1:\ \frac{x-3}{3}=\frac{y-\alpha}{-1}=\frac{z-3}{1}=\lambda \quad\Rightarrow\quad \mathbf{r}_1=(3,\alpha,3),\ \mathbf{a}_1=\langle 3,-1,1\rangle, \] \[ L_2:\ \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-\beta}{4}=\mu \quad\Rightarrow\quad \mathbf{r}_2=(-3,-7,\beta),\ \mathbf{a}_2=\langle -3,2,4\rangle. \]
The shortest distance \(d\) between skew lines with position vectors \(\mathbf{r}_1,\mathbf{r}_2\) and direction vectors \(\mathbf{a}_1,\mathbf{a}_2\) is
\[ d=\frac{\left|(\mathbf{r}_2-\mathbf{r}_1)\cdot(\mathbf{a}_1\times\mathbf{a}_2)\right|}{\left|\mathbf{a}_1\times\mathbf{a}_2\right|}. \]
Step 1: Compute \(\mathbf{a}_1\times\mathbf{a}_2\) and its magnitude.
\[ \mathbf{a}_1\times\mathbf{a}_2= \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ 3&-1&1\\ -3&2&4 \end{vmatrix} =\langle -6,\,-15,\,3\rangle,\qquad \left|\mathbf{a}_1\times\mathbf{a}_2\right|=\sqrt{36+225+9}=3\sqrt{30}. \]
Step 2: Form \(\mathbf{r}_2-\mathbf{r}_1\) and the scalar triple product.
\[ \mathbf{r}_2-\mathbf{r}_1=\langle -6,\,-7-\alpha,\,\beta-3\rangle, \] \[ (\mathbf{r}_2-\mathbf{r}_1)\cdot(\mathbf{a}_1\times\mathbf{a}_2) = (-6)(-6)+(-7-\alpha)(-15)+(\beta-3)(3) = 36+105+15\alpha+3\beta-9 =132+15\alpha+3\beta. \]
Step 3: Use the given shortest distance \(d=3\sqrt{30}\):
\[ \frac{\left|132+15\alpha+3\beta\right|}{3\sqrt{30}}=3\sqrt{30} \ \Rightarrow\ \left|132+15\alpha+3\beta\right|=(3\sqrt{30})^2=270. \] \[ \Rightarrow\ 15\alpha+3\beta=\pm 138 \ \Rightarrow\ 5\alpha+\beta=\pm 46. \]
The positive value of \(5\alpha+\beta\) is 46.
If $ \theta \in [-2\pi,\ 2\pi] $, then the number of solutions of $$ 2\sqrt{2} \cos^2\theta + (2 - \sqrt{6}) \cos\theta - \sqrt{3} = 0 $$ is:
A thin transparent film with refractive index 1.4 is held on a circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is:
The major product (A) formed in the following reaction sequence is
