Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
1. Identify the points and direction vectors:
- Line 1: $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$
- Point $A(3, \alpha, 3)$
- Direction vector $\vec{p} = 3\hat{i} - \hat{j} + \hat{k}$
- Line 2: $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$
- Point $B(-3, -7, \beta)$
- Direction vector $\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}$
2. Calculate $\vec{p} \times \vec{q}$: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = 6\hat{i} + 15\hat{j} - 9\hat{k} \]
3. Calculate $\vec{BA}$: \[ \vec{BA} = (3 + 3)\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} = 6\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} \]
4. Use the distance formula: \[ \frac{|\vec{BA} \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = 3\sqrt{30} \] \[ \frac{|6 \cdot 6 + 15(\alpha + 7) - 9(3 - \beta)|}{\sqrt{6^2 + 15^2 + (-9)^2}} = 3\sqrt{30} \] \[ 36 + 15(\alpha + 7) - 9(3 - \beta) = 270 \] \[ 15\alpha + 3\beta = 138 \] \[ 5\alpha + \beta = 46 \] Therefore, the correct answer is (2) 46.
We are given two lines in symmetric form and the shortest distance between them is \(3\sqrt{30}\). Let
\[ L_1:\ \frac{x-3}{3}=\frac{y-\alpha}{-1}=\frac{z-3}{1}=\lambda \quad\Rightarrow\quad \mathbf{r}_1=(3,\alpha,3),\ \mathbf{a}_1=\langle 3,-1,1\rangle, \] \[ L_2:\ \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-\beta}{4}=\mu \quad\Rightarrow\quad \mathbf{r}_2=(-3,-7,\beta),\ \mathbf{a}_2=\langle -3,2,4\rangle. \]
The shortest distance \(d\) between skew lines with position vectors \(\mathbf{r}_1,\mathbf{r}_2\) and direction vectors \(\mathbf{a}_1,\mathbf{a}_2\) is
\[ d=\frac{\left|(\mathbf{r}_2-\mathbf{r}_1)\cdot(\mathbf{a}_1\times\mathbf{a}_2)\right|}{\left|\mathbf{a}_1\times\mathbf{a}_2\right|}. \]
Step 1: Compute \(\mathbf{a}_1\times\mathbf{a}_2\) and its magnitude.
\[ \mathbf{a}_1\times\mathbf{a}_2= \begin{vmatrix} \mathbf{i}&\mathbf{j}&\mathbf{k}\\ 3&-1&1\\ -3&2&4 \end{vmatrix} =\langle -6,\,-15,\,3\rangle,\qquad \left|\mathbf{a}_1\times\mathbf{a}_2\right|=\sqrt{36+225+9}=3\sqrt{30}. \]
Step 2: Form \(\mathbf{r}_2-\mathbf{r}_1\) and the scalar triple product.
\[ \mathbf{r}_2-\mathbf{r}_1=\langle -6,\,-7-\alpha,\,\beta-3\rangle, \] \[ (\mathbf{r}_2-\mathbf{r}_1)\cdot(\mathbf{a}_1\times\mathbf{a}_2) = (-6)(-6)+(-7-\alpha)(-15)+(\beta-3)(3) = 36+105+15\alpha+3\beta-9 =132+15\alpha+3\beta. \]
Step 3: Use the given shortest distance \(d=3\sqrt{30}\):
\[ \frac{\left|132+15\alpha+3\beta\right|}{3\sqrt{30}}=3\sqrt{30} \ \Rightarrow\ \left|132+15\alpha+3\beta\right|=(3\sqrt{30})^2=270. \] \[ \Rightarrow\ 15\alpha+3\beta=\pm 138 \ \Rightarrow\ 5\alpha+\beta=\pm 46. \]
The positive value of \(5\alpha+\beta\) is 46.
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
