Let the shortest distance between the lines $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$ be $3\sqrt{30}$. Then the positive value of $5\alpha + \beta$ is
1. Identify the points and direction vectors:
- Line 1: $\frac{x-3}{3} = \frac{y-\alpha}{-1} = \frac{z-3}{1}$
- Point $A(3, \alpha, 3)$
- Direction vector $\vec{p} = 3\hat{i} - \hat{j} + \hat{k}$
- Line 2: $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-\beta}{4}$
- Point $B(-3, -7, \beta)$
- Direction vector $\vec{q} = -3\hat{i} + 2\hat{j} + 4\hat{k}$
2. Calculate $\vec{p} \times \vec{q}$: \[ \vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 3 & -1 & 1 \\ -3 & 2 & 4 \end{vmatrix} = 6\hat{i} + 15\hat{j} - 9\hat{k} \]
3. Calculate $\vec{BA}$: \[ \vec{BA} = (3 + 3)\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} = 6\hat{i} + (\alpha + 7)\hat{j} + (3 - \beta)\hat{k} \]
4. Use the distance formula: \[ \frac{|\vec{BA} \cdot (\vec{p} \times \vec{q})|}{|\vec{p} \times \vec{q}|} = 3\sqrt{30} \] \[ \frac{|6 \cdot 6 + 15(\alpha + 7) - 9(3 - \beta)|}{\sqrt{6^2 + 15^2 + (-9)^2}} = 3\sqrt{30} \] \[ 36 + 15(\alpha + 7) - 9(3 - \beta) = 270 \] \[ 15\alpha + 3\beta = 138 \] \[ 5\alpha + \beta = 46 \] Therefore, the correct answer is (2) 46.
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: