Given the equation:
\( \cos 2x + a \sin x = 2a - 7 \)
We need to find the set of all \( a \in \mathbb{R} \) such that this equation has a solution in the interval \( [p, q] \), and find the value of \( pqr \) where:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Step 1. Analyzing the Equation: Rewrite the equation as:
\( a(\sin x - 2) = 2(\sin x - 2)(\sin x + 2) \)
For \( \sin x = 2 \), we have:
\( a = 2(\sin x + 2) \)
Therefore, the values of \( a \) lie in the interval:
\( a \in [2, 6] \)
So, \( p = 2 \) and \( q = 6 \).
Step 2. Calculating \( r \): Given:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Using trigonometric identities:
\( \cot 63^\circ + \tan 81^\circ = \frac{1}{\tan 27^\circ + \tan 81^\circ} \)
Simplifying further:
\(r = 4\)
Step 3. Calculating pqr:
\(p · q · r = 2 · 6 · 4 = 48\)
The given graph illustrates:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: