Given that the equation \[ \cos 2x + a\sin x = 2a-7 \] has a real solution. Let the range of possible values of \(a\) be \([p,q]\). Also, compute \[ r=\tan 9^\circ+\cot 9^\circ-\tan 27^\circ-\cot 27^\circ. \] Find \(pqr\).
\[ \cos 2x=1-2\sin^2x,\quad \Rightarrow\quad 1-2\sin^2x+a\sin x=2a-7. \] Rearrange: \[ -2(\sin x-2)(\sin x+2)+a(\sin x-2)=0 \] \[ (\sin x-2)\!\left[a-2(\sin x+2)\right]=0. \] Since \(\sin x=2\) is impossible, we must have \[ a=2(\sin x+2). \] With \(\sin x\in[-1,1]\), \[ a\in\bigl[2( -1+2),\,2(1+2)\bigr]=[2,6]. \] Hence \(p=2,\; q=6\).
Use \(\tan\theta+\cot\theta=\dfrac{\sin^2\theta+\cos^2\theta}{\sin\theta\cos\theta}=\dfrac{1}{\sin\theta\cos\theta}=\dfrac{2}{\sin 2\theta}\). \[ r=\frac{2}{\sin 18^\circ}-\frac{2}{\sin 54^\circ}. \] Known exact values: \[ \sin 18^\circ=\frac{\sqrt5-1}{4},\qquad \sin 54^\circ=\cos 36^\circ=\frac{\sqrt5+1}{4}. \] Thus \[ r=2\!\left(\frac{4}{\sqrt5-1}-\frac{4}{\sqrt5+1}\right) =8\cdot\frac{(\sqrt5+1)-(\sqrt5-1)}{(\sqrt5-1)(\sqrt5+1)} =8\cdot\frac{2}{4}=4. \]
\[ p=2,\quad q=6,\quad r=4\quad\Rightarrow\quad pqr=2\cdot6\cdot4=\boxed{48}. \]
Given the equation:
\( \cos 2x + a \sin x = 2a - 7 \)
We need to find the set of all \( a \in \mathbb{R} \) such that this equation has a solution in the interval \( [p, q] \), and find the value of \( pqr \) where:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Step 1. Analyzing the Equation: Rewrite the equation as:
\( a(\sin x - 2) = 2(\sin x - 2)(\sin x + 2) \)
For \( \sin x = 2 \), we have:
\( a = 2(\sin x + 2) \)
Therefore, the values of \( a \) lie in the interval:
\( a \in [2, 6] \)
So, \( p = 2 \) and \( q = 6 \).
Step 2. Calculating \( r \): Given:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Using trigonometric identities:
\( \cot 63^\circ + \tan 81^\circ = \frac{1}{\tan 27^\circ + \tan 81^\circ} \)
Simplifying further:
\(r = 4\)
Step 3. Calculating pqr:
\(p · q · r = 2 · 6 · 4 = 48\)

Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).
