Given the equation:
\( \cos 2x + a \sin x = 2a - 7 \)
We need to find the set of all \( a \in \mathbb{R} \) such that this equation has a solution in the interval \( [p, q] \), and find the value of \( pqr \) where:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Step 1. Analyzing the Equation: Rewrite the equation as:
\( a(\sin x - 2) = 2(\sin x - 2)(\sin x + 2) \)
For \( \sin x = 2 \), we have:
\( a = 2(\sin x + 2) \)
Therefore, the values of \( a \) lie in the interval:
\( a \in [2, 6] \)
So, \( p = 2 \) and \( q = 6 \).
Step 2. Calculating \( r \): Given:
\( r = \tan 9^\circ - \tan 27^\circ - \frac{1}{\cot 63^\circ + \tan 81^\circ} \)
Using trigonometric identities:
\( \cot 63^\circ + \tan 81^\circ = \frac{1}{\tan 27^\circ + \tan 81^\circ} \)
Simplifying further:
\(r = 4\)
Step 3. Calculating pqr:
\(p · q · r = 2 · 6 · 4 = 48\)
Let $ f(x) = \begin{cases} (1+ax)^{1/x} & , x<0 \\1+b & , x = 0 \\\frac{(x+4)^{1/2} - 2}{(x+c)^{1/3} - 2} & , x>0 \end{cases} $ be continuous at x = 0. Then $ e^a bc $ is equal to
Total number of nucleophiles from the following is: \(\text{NH}_3, PhSH, (H_3C_2S)_2, H_2C = CH_2, OH−, H_3O+, (CH_3)_2CO, NCH_3\)