Given the equation: \(x^2 - 2^y = 2023\)
Step 1. By trial, we find that \( x = 45 \) and \( y = 1 \) satisfy the equation, as:
\(45^2 - 2^1 = 2025 - 2 = 2023\)
Step 2. Thus, the only solution in \( C \) is \( (x, y) = (45, 1) \).
Step 3. Calculate \( \sum_{(x, y) \in C} (x + y) \):
\(\sum_{(x, y) \in C} (x + y) = 45 + 1 = 46\)
The Correct Answer is: 46
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).