Given the equation: \(x^2 - 2^y = 2023\)
Step 1. By trial, we find that \( x = 45 \) and \( y = 1 \) satisfy the equation, as:
\(45^2 - 2^1 = 2025 - 2 = 2023\)
Step 2. Thus, the only solution in \( C \) is \( (x, y) = (45, 1) \).
Step 3. Calculate \( \sum_{(x, y) \in C} (x + y) \):
\(\sum_{(x, y) \in C} (x + y) = 45 + 1 = 46\)
The Correct Answer is: 46
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: