The growth rate of output (gYt) in a Cobb-Douglas production function is given by:
gYt = gAt + Ξ±gKt + Ξ²gHt + (1 β Ξ± β Ξ²)gLt
We are given:
Substituting into the formula:
10% = gAt + (1/5 Γ 5%) + (2/5 Γ 5%) + (2/5 Γ 10%)
Thus, we get:
10% = gAt + 1% + 2% + 4%
gAt = 10% β 7% = 3%
The growth rate of At is 3%.
Output (π) | 1 | 2 | 3 |
Total Costs (ππΆ) | 4 | 13 | 32 |
List-I | List-II | ||
---|---|---|---|
A | \( y = ln(x)\) | I | \(\frac{1}{x}\) |
B | \(y=\frac{x^2}{4}\) | II | \(3x^2\) |
C | \(y=x^3\) | III | \(\frac{x}{2}\) |
D | \(y=x+1\) | IV | \(1\) |