In the AK model, the steady-state growth rate of output per capita is given by:
\[ g_y = sA - \delta \]
where:
\[ g_y = (0.60)(0.50) - 0.05 \]
\[ = 0.30 - 0.05 \]
\[ = 0.25 \text{ or } 25\% \]
The steady-state growth rate of output per capita in the economy is 25%.
Output (π) | 1 | 2 | 3 |
Total Costs (ππΆ) | 4 | 13 | 32 |
List-I | List-II | ||
---|---|---|---|
A | \( y = ln(x)\) | I | \(\frac{1}{x}\) |
B | \(y=\frac{x^2}{4}\) | II | \(3x^2\) |
C | \(y=x^3\) | III | \(\frac{x}{2}\) |
D | \(y=x+1\) | IV | \(1\) |