To solve for \( l_1^2 + l_2^2 + l_3^2 \), where \( l_1, l_2, \) and \( l_3 \) are the lengths of the perpendiculars from the orthocenter of the triangle on its sides \( AB, BC, \) and \( CA \) respectively, we need to follow these steps:
Thus, the correct answer is \(\frac{1}{2}\).
Given that \(\Delta ABC\) is equilateral, the orthocenter and centroid coincide.
The coordinates of the centroid \(G\) are:
\(G = \left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right).\)
Considering point \(A(2, 2, 1)\), point \(B(1, 2, 2)\), and point \(C(2, 1, 2)\), the midpoint \(D\) of side \(AB\) is calculated as:
\(D = \left(\frac{3}{2}, 2, \frac{3}{2}\right).\)
To find the lengths of perpendiculars from \(G\) to the sides, we use the distance formula:
\(\ell_1 = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}} = \frac{1}{\sqrt{6}}.\)
Since the triangle is equilateral, we have:
\(\ell_1 = \ell_2 = \ell_3 = \frac{1}{\sqrt{6}}.\)
The sum of the squares of these perpendicular lengths is:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2.\)
Simplifying:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.\)
The Correct answer is: \( \frac{1}{2} \)
Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?
