To solve for \( l_1^2 + l_2^2 + l_3^2 \), where \( l_1, l_2, \) and \( l_3 \) are the lengths of the perpendiculars from the orthocenter of the triangle on its sides \( AB, BC, \) and \( CA \) respectively, we need to follow these steps:
Thus, the correct answer is \(\frac{1}{2}\).
Given that \(\Delta ABC\) is equilateral, the orthocenter and centroid coincide.
The coordinates of the centroid \(G\) are:
\(G = \left(\frac{5}{3}, \frac{5}{3}, \frac{5}{3}\right).\)
Considering point \(A(2, 2, 1)\), point \(B(1, 2, 2)\), and point \(C(2, 1, 2)\), the midpoint \(D\) of side \(AB\) is calculated as:
\(D = \left(\frac{3}{2}, 2, \frac{3}{2}\right).\)
To find the lengths of perpendiculars from \(G\) to the sides, we use the distance formula:
\(\ell_1 = \sqrt{\frac{1}{36} + \frac{1}{9} + \frac{1}{36}} = \frac{1}{\sqrt{6}}.\)
Since the triangle is equilateral, we have:
\(\ell_1 = \ell_2 = \ell_3 = \frac{1}{\sqrt{6}}.\)
The sum of the squares of these perpendicular lengths is:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2 + \left(\frac{1}{\sqrt{6}}\right)^2.\)
Simplifying:
\(\ell_1^2 + \ell_2^2 + \ell_3^2 = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.\)
The Correct answer is: \( \frac{1}{2} \)
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Method used for separation of mixture of products (B and C) obtained in the following reaction is: 