Let the points $P_1(\frac{\pi}{4}), P_2(\frac{3\pi}{4}), P_3(\frac{5\pi}{4}), P_4(\frac{7\pi}{4})$ lie on the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$. Then they form:
Show Hint
Parametric Points on Hyperbola:
Standard form: $(a\sec\theta, b\tan\theta)$
Points $(\pm x, \pm y)$ lie at symmetric rectangle corners.
Check distances and orientation for shape classification.