For problems involving lines and planes, remember the conditions for intersection, parallelism, and perpendicularity.
The scalar triple product is zero for coplanar vectors.
The shortest distance between a point and a line is along the perpendicular.
Given:
\( (3x + 2y + z - 2) + \mu(x - 3y + 2z - 13) = 0 \)
Substituting values:
\( 3(3 + \mu) + 1 \cdot (2 - 3\mu) - 2(1 + 2\mu) = 0 \)
\( 9 - 4\mu = 0 \)
Solving for \( \mu \):
\( \mu = \frac{9}{4} \)
Next:
\( 4(-15 - 8 + \alpha - 2) + 9(-5 + 12 + 2\alpha - 13) = 0 \)
\( -100 + 4\alpha - 54 + 18\alpha = 0 \)
Simplifying:
\( \Rightarrow \alpha = 7 \)
Let:
\( P \equiv (3\lambda - 5, \lambda - 4, -2\lambda + 7) \)
Direction ratios of PQ:
\( (3\lambda - 1, \lambda - 1, -2\lambda + 5) \)
Since \( PQ \perp \ell_1 \):
\( 3(3\lambda - 1) + 1 \cdot (\lambda - 1) - 2(-2\lambda + 5) = 0 \)
Solving:
\( \lambda = 1 \)
Substituting \( \lambda = 1 \) into \( P \):
\( P = (-2, -3, 5) \)
Finally:
\( |a| + |b| + |c| = 10 \)
Let \(\vec{a}, \vec{b}, \vec{c}\)
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\), then \(|\vec{a}| + |\vec{b}| + |\vec{c}|\)| is equal to :
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: