The given line \( \ell \) is:
\( \frac{y - 1}{2} = \frac{z - 3}{\lambda}, \, \lambda \in \mathbb{R}. \)
The direction ratios (Dr’s) of the line \( \ell \) are \( (1, 2, \lambda) \).
The equation of the plane is:
\( x + 2y + 3z = 4. \)
The direction ratios of the normal vector of the plane are \( (1, 2, 3) \).
The angle between the line \( \ell \) and the plane \( P \) is given by:
\( \sin \theta = \frac{|1 + 4 + 3\lambda|}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}}. \)
It is given that:
\( \cos \theta = \frac{5}{14}, \, \text{so} \, \sin \theta = \frac{3\sqrt{14}}{14}. \)
Equating:
\( \frac{|1 + 4 + 3\lambda|}{\sqrt{5 + \lambda^2} \cdot \sqrt{14}} = \frac{3\sqrt{14}}{14}. \)
Simplify:
\( |1 + 4 + 3\lambda| = 3 \implies 1 + 4 + 3\lambda = 3. \)
Solve for \( \lambda \):
\( 3\lambda = 2 \implies \lambda = \frac{2}{3}. \)
The parametric equation of the line \( \ell \) is:
\( (t, 2t + 1, \frac{2}{3}t + 3). \)
The point lies on the plane:
\( t + 2(2t + 1) + 3\left(\frac{2}{3}t + 3\right) = 4. \)
Simplify:
\( t + 4t + 2 + 2t + 9 = 4. \)
\( 7t + 11 = 4 \implies t = -1. \)
Substitute \( t = -1 \) into the parametric equation of the line:
\( (-1, -1, \frac{7}{3}) = (\alpha, \beta, \gamma). \)
The point satisfies:
\( \alpha + 2\beta + 6\gamma = -1 + 2(-1) + 6\left(\frac{7}{3}\right). \)
Simplify:
\( -1 - 2 + 14 = 11. \)
The point is \( (-1, -1, \frac{7}{3}) \), and the condition \( \alpha + 2\beta + 6\gamma = 11 \) is satisfied.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: