Step 1: Find intercepts of the line
The line is 2x + 3y – k = 0, k > 0.
x–intercept A: set y = 0 ⇒ 2x – k = 0 ⇒ x = k/2 ⇒ A = (k/2, 0).
y–intercept B: set x = 0 ⇒ 3y – k = 0 ⇒ y = k/3 ⇒ B = (0, k/3).
Step 2: Use the diameter condition of the given circle
The circle with diameter AB has equation x² + y² – 3x – 2y = 0.
Its center is the midpoint of A and B, i.e. M = (3/2, 1).
But the midpoint of A(k/2, 0) and B(0, k/3) is
\[
\left(\frac{k/2 + 0}{2}, \frac{0 + k/3}{2}\right) = \left(\frac{k}{4}, \frac{k}{6}\right).
\]
Equate coordinates with (3/2, 1): k/4 = 3/2 ⇒ k = 6, and k/6 = 1 ⇒ k = 6 (consistent).
Step 3: Form the ellipse and its parameters
Given ellipse: x² + 9y² = k². With k = 6, it becomes x² + 9y² = 36 ⇒
\[
\frac{x^2}{36} + \frac{y^2}{4} = 1,
\]
so a² = 36, b² = 4 ⇒ a = 6, b = 2 (major axis along x).
Step 4: Length of the latus rectum
For ellipse \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) with a ≥ b, the length of the latus rectum is
\[
\ell = \frac{2b^2}{a} = \frac{2 \cdot 4}{6} = \frac{8}{6} = \frac{4}{3}.
\]
Thus \(\ell = m/n\) with coprime m, n ⇒ m = 4, n = 3.
Step 5: Compute 2m + n
2m + n = 2·4 + 3 = 8 + 3 = 11.
Final answer
11