Centre of the circle:
\[ \left( \frac{3}{2}, 1 \right) \]
Equation of diameter:
\[ 2\left( \frac{3}{2} \right) + 3(1) - k = 0 \implies k = 6 \]
Now, equation of ellipse becomes:
\[ x^2 + 9y^2 = 36 \]
\[ \frac{x^2}{6^2} + \frac{y^2}{2^2} = 1 \]
Length of latus rectum (LR):
\[ LR = \frac{2b^2}{a} = \frac{2 \cdot 2^2}{6} = \frac{8}{6} = \frac{4}{3} = \frac{m}{n} \]
Thus, \[ 2m + n = 2(4) + 3 = 11 \]
A force \( \vec{f} = x^2 \hat{i} + y \hat{j} + y^2 \hat{k} \) acts on a particle in a plane \( x + y = 10 \). The work done by this force during a displacement from \( (0,0) \) to \( (4m, 2m) \) is Joules (round off to the nearest integer).