In this solution, we will derive the marginal probability density functions of the random variables \(X\) and \(Y\) from the given joint probability density function. Then, we will calculate the expected values and variances of \(X\) and \(Y\) to determine which options are correct.
Given: The joint probability density function of the random variables \(X\) and \(Y\) is:
\(f(x,y) = \begin{cases} 1, &\quad 0 < x < 1, \, x < y < x+1 \\ 0, &\quad \text{Otherwise} \end{cases}\)
The marginal density of \(X\), \(f_X(x)\), is obtained by integrating the joint density function over \(y\):
\(f_X(x) = \int_{x}^{x+1} f(x,y) \, dy = \int_{x}^{x+1} 1 \, dy = [y]_{x}^{x+1} = (x+1) - x = 1\), for \(0 < x < 1\)
Hence the marginal density function of \(X\) is:
\(f_X(x) = \begin{cases} 1, &\quad 0 < x < 1 \\ 0, &\quad \text{Otherwise}\end{cases}\)
The marginal density of \(Y\), \(f_Y(y)\), is obtained by integrating the joint density function over \(x\):
\(f_Y(y) = \int_{0}^{y} f(x,y) \, dx = \int_{0}^{y} 1 \, dx = [x]_{0}^{y} = y\), for \(0 < y < 1\)
For \(1 \leq y < 2\), the integration limits change, \(x\) ranges from \(y-1\) to 1:
\(f_Y(y) = \int_{y-1}^{1} 1 \, dx = [x]_{y-1}^{1} = 1 - (y-1) = 2 - y\)
Thus, the marginal density function of \(Y\) is:
\(f_Y(y) = \begin{cases} y, &\quad 0 < y < 1 \\ 2-y, &\quad 1 \leq y < 2 \\ 0, &\quad \text{Otherwise}\end{cases}\)
The expected value of \(X\) is:
\(E(X) = \int_{0}^{1} x \cdot f_X(x) \, dx = \int_{0}^{1} x \cdot 1 \, dx = \left[\frac{x^2}{2}\right]_{0}^{1} = \frac{1}{2}\)
The variance of \(X\) is:
\(\text{Var}(X) = \int_{0}^{1} x^2 \cdot f_X(x) \, dx - (E(X))^2 = \int_{0}^{1} x^2 \, dx - \left(\frac{1}{2}\right)^2 = \left[\frac{x^3}{3}\right]_{0}^{1} - \frac{1}{4} = \frac{1}{3} - \frac{1}{4} = \frac{1}{12}\)
The expected value of \(Y\) is:
\(E(Y) = \frac{1}{3} + \frac{5}{3} = 1\)
The variance of \(Y\) is:
\(\text{Var}(Y) = \frac{1}{4} + \frac{5}{4} - E(Y)^2 = \frac{3}{2} - 1 = \frac{1}{2}\)\)
Based on calculations, the correct options are:
Thus, the information about the marginal densities and the expected values and variances of \(X\) and \(Y\) matches the correct option given.
The sum of the payoffs to the players in the Nash equilibrium of the following simultaneous game is ............
| Player Y | ||
|---|---|---|
| C | NC | |
| Player X | X: 50, Y: 50 | X: 40, Y: 30 |
| X: 30, Y: 40 | X: 20, Y: 20 | |