Question:

Let the joint probability density function of the random variables 𝑋 and π‘Œ be
\(f(x,y) =   \begin{cases} 1,     & \quad 0<x<1,\,\,\,\,x<y<x+1\\   0,& \quad \ \text{ Otherwise}   \end{cases}\)
Let the marginal density of 𝑋 and π‘Œ be 𝑓𝑋(π‘₯) and π‘“π‘Œ (𝑦), respectively. Which of the following is/are CORRECT?

Updated On: Oct 1, 2024
  • \(f_x(x) = \begin{cases} 2x,\,\,\,0<x<1     & \quad \\   0, \,\,\,\,\text{Otherwise}\end{cases}\) And \(f_y(y) =   \begin{cases} 2-y,\,\,\,0<y<2     & \quad \\   0, \,\,\,\,\text{Otherwise}\end{cases}\)
  • \(f_x(x) = \begin{cases} 1,\,\,\,0<x<1     & \quad \\   0, \,\,\,\,\text{Otherwise}\end{cases}\) And  \(f_y(y) =   \begin{cases} y,\,\,\,\,\,\,\,\,\,\,\,\,0<y<1    & \quad \\   2-y, \,\,1≀y<2\\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Otherwise}\end{cases}\)
  • \(E(X)=\frac{1}{2}\), var(X)=\(\frac{1}{12}\)
  • \(E(Y)=1\), var(Y)= \(\frac{1}{6}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B, C, D

Solution and Explanation

The correct options is (B): \(f_x(x) = \begin{cases} 1,\,\,\,0<x<1     & \quad \\   0, \,\,\,\,\text{Otherwise}\end{cases}\) And  \(f_y(y) =   \begin{cases} y,\,\,\,\,\,\,\,\,\,\,\,\,0<y<1    & \quad \\   2-y, \,\,1≀y<2\\0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{Otherwise}\end{cases}\), (C): \(E(X)=\frac{1}{2}\), var(X)=\(\frac{1}{12}\) and (D): \(E(Y)=1\), var(Y)= \(\frac{1}{6}\)
Was this answer helpful?
0
0

Questions Asked in IIT JAM EN exam

View More Questions